THE TECHNIQUE OF CALCULATING THE PARAMETERS OF THE PROCESS AND SELECTION OF EQUIPMENT FOR HIGH-VOLTAGE CONDENSER WELDING


Cite item

Full Text

Abstract

The necessity to manufacture metal structures from non-ferrous metals in one- and heterogeneous combinations is the critical task at the production site. The main constraints when welding fasteners to hull details from non-ferrous metals are the polythickness of the elements leading to uneven heat input and heat dissipation, the difference in electrical and thermophysical properties, as well as the probability of intermetallic phases’ formation due to the mutual diffusion of atoms of the near-surface layers during the dissolution processes and phase transformations.

The analysis of the structural design of equipment components and the difficulties in their production showed that it is necessary to form the welded joint mainly in the solid phase using the highly-concentrated pulsed energy sources. To create physical contact of the parts to be connected, high-voltage capacitor welding with the induction-dynamic drive (HVCW with IDD) can best meet the requirements.

The authors proposed the technique to calculate the parameters of the process of welding fasteners from non-ferrous metals to the hull structures sheet elements. The essence of the process of HVCW with IDD was considered. The paper presents its energy parameters and geometric parameters of the assembly affecting the quality of the welded joint.

The previous theoretical analysis of the HVCW process, the experimental studies and design investigations of the HVCW devices allowed developing a scientifically grounded algorithm for calculating and selecting the parameters of the technological process and the equipment for its implementation. The algorithm provides for two stages of its implementation. At the first stage, the temporary options of the process are calculated. At the second stage, the parameters of the equipment and tools satisfying the condition of solid-phase volume interaction are calculated and selected. Based on the data obtained, the selection of equipment components with the tooling and the subsequent adjustment of welding parameters taking into account the course of the processes in solid phase are carried out.

To reduce the complexity of calculations, software that will allow determining the parameters of the HVCW process, the energy and frequency characteristics of equipment and tooling was developed.

About the authors

S. V. Nescoromniy

Don State Technical University

Author for correspondence.
Email: nescoromniy@mail.ru

PhD (Engineering), Associate Professor

Russian Federation

Yu. V. Panov

Don State Technical University

Email: u-panov@yandex.ru

senior lecturer

Russian Federation

References

  1. Karakozov E.S. Soedinenie metallov v tverdoy faze [Solid phase metal joining]. Moscow, Metallurgiya Publ., 1976. 264 p.
  2. Sapanathan T., Raoelison R.N., Buiron N., Rachik M. Magnetic Pulse Welding: An Innovative Joining Technology for Similar and Dissimilar Metal Pairs. Industrial Engineering and Management. Joining Technologies. London, INTECH Publ., 2016, pp. 243–273.
  3. Konyushkov G.V., Musin R.A. Spetsialnye metody svarki davleniem [Special methods of pressure wel-ding]. Saratov, Ay Pi Er Media Publ., 2009. 632 p.
  4. Strizhakov E.L., Batsemakin M.Yu., Neskoromnyy S.V. Conditions for quality processing and algorithm of estimation and selection of parameters of magnetic-pulse welding of lapped joints. Fizika i khimiya obrabotki materialov, 2007, no. 1, pp. 64–67.
  5. Ivanov E.G. Calculation of the mode of magnetic pulse processing of tubular blanks. Kuznechno-shtampovochnoe proizvodstvo, 1984, no. 7, pp. 17–20.
  6. Magnitno-impulsnaya obrabotka metallov [Magnetic-pulse processing of metals]. Voronezh, ENIKMASh Publ., 1976. 181 p.
  7. Strizhakov E.L., Neskoromnyy S.V., Minko D.V. Razryadno-impulsnaya obrabotka materialov [Dis-charge-impulse processing of materials]. Rostov-on-Don, DGTU Publ., 2016. 201 p.
  8. Neskoromnyy S.V., Strizhakov E.L. Ustroystvo dlya udarnoy kondensatornoy svarki sterzhnevykh detaley s ploskim osnovaniem [Device for shock condenser welding of rod parts with a flat base], patent RF no. 70839, 2008. 9. Strizhakov E.L., Petrovskiy V.P., Chemeris V.T.
  9. The choice of constructive parameters of inductors of magnetic pulse processing. Elektronnaya promysh-lennost, 1990, no. 12, pp. 15–17. 10. Egorov Yu.A., Karpukhin V.F., Fomicheva L.F.
  10. Magnetic pulse drive for deformation of sheet and tubular blanks. Magnitno-impulsnaya obrabotka materialov na sovremennom etape: trudy 1-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. “Metall-deform-99”. Sektsiya 4. Samara, SGAU Publ., 1999, pp. 46–50.
  11. Talalaev A.K. Induktory i ustanovki dlya magnitno-impulsnoy obrabotki metallov [Inductors and installa-tion for magnetic-pulse processing of metals]. Moscow, Informtekhnika Publ., 1992. 143 p.
  12. Weddeling C., Hahn M., Daehn G.S., Tekkaya A.E. Uniform Pressure Electromagnetic Actuator – An innovative tool for magnetic pulse welding. International Conference on Manufacture of Lightweight Components, 2014, vol. 18, pp. 156–161.
  13. Strizhakov E.L., Neskoromnyy S.V., Merkulov R.V., Ageev S.O. Classification of receptions and research of the process of high-voltage capacitor welding. Svarochnoe proizvodstvo, 2015, no. 3, pp. 42–46.
  14. Nescoromniy S.V., Ageev S.О., Strizhakov E.L. Development of methods and research on high voltage capac-itor welding. Key Engineering Materials Submitted, 2015, vol. 684, pp. 185–192.
  15. Dattoma V., Palano F., Panella F.W. Mechanical and technological analysis of AISI 304 butt joints welded with capacitor discharge process. Materials & Design, 2010, vol. 31, no. 1, pp. 176–184.
  16. Semenov A.P. Issledovanie skhvatyvaniya metallov pri sovmestnom plasticheskom deformirovanii [Study of metal setting at joint plastic deformation]. Moscow, AN SSSR Publ., 1953. 120 p.
  17. Semenov A.P. Skhvatyvanie metallov [Solidification of metals]. Moscow, Mashgiz Publ., 1958. 280 p.
  18. Zhisong Fan, Haiping Yu, Chunfeng Li. Plastic deformation behavior of bi-metal tubes during magnetic pulse cladding: FE analysis and experiments. Journal of Materials Processing Technology, 2016, vol. 229, pp. 230–243.
  19. Kaleko D.M., Moravskiy V.E., Chvertko N.A. Udarnaya kondensatornaya svarka [Impact capacitor welding]. Kiev, Nauk. Dumka Publ., 1984. 200 p.
  20. Jones H. Formation of microstructure in rapidly solidi-fied materials and its effect on properties. Materials Science and Engineering: Fifth International Symposium on Plasticity of Metals and Alloys A, 1991, vol. 137, pp. 77–85.
  21. Mak Lin D. Granitsy zeren v metallakh [Grain Boundaries in Metals]. Moscow, Metallurgizdat Publ., 1960. 322 p.
  22. Belyy I.V., Fertik S.M., Khimenko L.T. Spravochnik po magnitno-impulsnoy obrabotke metallov [Handbook on Magnetic-Pulse Metal Treatment]. Kharkov Vishcha shkola Publ., 1977. 168 p.
  23. Badyanov B.N. Spravochnik po magnitno-impulsnoy obrabotke metallov [Handbook on magnetic-pulse processing of metals]. Ulyanovsk, Ulyanovskiy GTU Publ., 2000. 405 p.
  24. Katalog produktsii: vysokovoltnye kondensatory, istochniki pitaniya, razryadniki, sistemy upravleniya [Catalog of the production: high-voltage capacitors, power supplies, dischargers, control systems]. Moscow, Russkaya tekhnologicheskaya gruppa 2 Publ., 2014. 30 p.
  25. Proskuryakov N.E. Optimization of the parameters of the equipment and inductor system for calculating the technological processes of magnetic pulse stamping. Kuznechno-shtampovochnoe proizvodstvo, 1998, no. 10, pp. 27–29.
  26. Karpukhin V.F. Determination of MIS energy required for magnetic-pulse welding. Poluchenie detaley avia-tsionnoy tekhniki metodami plasticheskoy deformatsii metallov: mezhvuzovskiy sbornik. Kuybyshev, KuAI Publ., 1981. Vyp. 2, pp. 70–74.
  27. Yusupov R.Yu., Glushchenkov V.A. Energeticheskie ustanovki dlya magnitno-impulsnoy obrabotki materi-alov [Power plants for magnetic-impulse processing of materials]. Samara, ID Fedorov Publ., 2013. 128 p.
  28. Yureneva V.N., Lebedeva P.D., eds. Teplotekhnicheskiy spravochnik [Thermal reference book]. Moscow, Energiya Publ., 1975. 744 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies