Investigation of heat release in nanomodified elastomers during stretching and torsion under the action of electric voltage

Cover Page

Cite item

Full Text

Abstract

The authors studied the elastomers modified with carbon nanotubes (MWCNTs) with a mass concentration from 1 to 8 % wt. and investigated the modes of heat release of nanomodified elastomers within the range between 30 and 260 V (of alternating current) at different levels of stretching and torsion. Samples of elastomers with the MWCNT concentration from 1 to 5 % wt. in the supply voltage range up to 260 V did not generate heat. The study showed that heat release when feeding composites of elastomers with MWCNTs was observed at a mass concentration of 6 % wt. of MWCNTs and a supply voltage of 70 V. The maximum voltage for an elastomer sample with 6 % wt. of MWCNTs reaches 260 V. An increase in concentration to 7 % wt. causes the increase in the heat release power and the decrease in the maximum supply voltage level to 180 V when the initial heat release voltage is 40 V. At the 8 % wt. concentration, the power increases, and the limiting voltage drops to 100 V, while the initial voltage becomes 36 V. The study identified that when twisting elastomer by 360°, the areas with an increased temperature on the right and in the central zone of the sample (49.5 °C) are formed. The temperature at the bend point increases up to 50.2° С when twisting elastomer by 540°. An increase in the twisting angle to 1080° leads to the formation of areas with the elevated temperature near the right-side current-carrying clamp. It is worth noting the possibility of using the produced samples of elastomers with MWCNTs as sensitive elements of strain sensors, which will allow obtaining the information on physical and chemical parameters according to the principles of measuring the change in electrical resistance that occurs during stretching and torsion.

About the authors

Aleksandr V. Shchegolkov

Tambov State Technical University, Tambov

Author for correspondence.
Email: Energynano@yandex.ru
ORCID iD: 0000-0002-4317-0689

PhD (Engineering), Associate Professor, assistant professor of Chair “Technology and Methods of Nanoproducts Manufacturing”

Russian Federation

Aleksey V. Shchegolkov

Tambov State Technical University, Tambov

Email: alexxx5000@mail.ru
ORCID iD: 0000-0002-1838-3842

аспирант кафедры «Техника и технологии производства нанопродуктов»

Russian Federation

Nataliya V. Zemtsova

Tambov State Technical University, Tambov

Email: natasha_paramonova_68@mail.ru
ORCID iD: 0000-0002-5274-6133

postgraduate student of Chair “Technology and Methods of Nanoproducts Manufacturing”

Russian Federation

References

  1. Jeong C.K., Lee J., Han S., Ryu J., Hwang G.T., Park D.Y., Park J.H., Lee S.S., Byun M., Ko S.H., Lee K.J. A hyper-stretchable elastic-composite energy harvester. Advanced Materials, 2015, vol. 27, no. 18, pp. 2866–2875. doi: 10.1002/adma.201500367.
  2. Liang L., Gao C., Chen G., Guo C.Y. Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. Journal of Materials Chemistry C, 2016, vol. 4, no. 3, pp. 526–532. doi: 10.1039/C5TC03768A.
  3. Cacucciolo V., Shintake J., Kuwajima Y., Maeda S., Floreano D., Shea H. Stretchable pumps for soft machines. Nature, 2019, vol. 572, no. 7770, pp. 516–519. doi: 10.1038/s41586-019-1479-6.
  4. Qu C., Wang S., Liu L., Bai Y., Li L., Sun F.Q., Hao M.M., Li T., Lu Q.F., Li L.L., Qin S.J., Zhang T. Bioinspired Flexible Volatile Organic Compounds Sensor Based on Dynamic Surface Wrinkling with Dual-Signal Response. Small, 2019, vol. 15, no. 17, article number 1900216. doi: 10.1002/smll.201900216.
  5. Aouraghe M.A., Xu F., Liu X., Qiu Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Composites Science Technology, 2019, vol. 183, article number 107824. doi: 10.1016/j.compscitech.2019.107824.
  6. Xu P., Kang J., Suhr J., Smith J.P., Booksh K.S., Wei B., Yu J., Li F., Byun J., Oh Y., Chou T. Spatial strain variation of graphene films for stretchable electrodes. Carbon, 2015, vol. 93, pp. 620–624. doi: 10.1016/j.carbon.2015.05.096.
  7. Hudaya C., Jeon B.J., Lee J.K. High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Applied Materials and Interfaces, 2015, vol. 7, no. 1, pp. 57–61. doi: 10.1021/am507497u.
  8. Spinelli G., Lamberti P., Tucci V., Guadagno L., Vertuccio L. Damage Monitoring of Structural Resins Loaded with Carbon Fillers: Experimental and Theoretical Study. Nanomaterials, 2020, vol. 10, no. 3, article number 434. doi: 10.3390/nano10030434.
  9. Guadagno L., Foglia F., Pantani R., Romero-Sanchez M.D., Calderon B., Vertuccio L. Low-Voltage Icing Protection Film for Automotive and Aeronautical Industries. Nanomaterials, 2020, vol. 10, no. 7, pp. 1–16. doi: 10.3390/nano10071343.
  10. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon, 2016, vol. 110, pp. 343–349. doi: 10.1016/j.carbon.2016.09.016.
  11. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, vol. 438, no. 7065, pp. 197–200. doi: 10.1038/nature04233.
  12. Stankovich S., Dikin D.A., Dommett G.H., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. Graphene-based composite materials. Nature, 2006, vol. 442, no. 7100, pp. 282–286. doi: 10.1038/nature04969.
  13. Novoselov K.S., Fal′ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for grapheme. Nature, 2012, vol. 490, pp. 192–200. doi: 10.1038/nature11458.
  14. Potts J.R., Shankar O., Murali S., Du L., Ruoff R.S. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Composites Science and Technology, 2013, vol. 74, pp. 166–172. doi: 10.1016/j.compscitech.2012.11.008.
  15. Chu K., Yun D.-J., Kim D., Park H., Park S.-H. Study of electric heating effects on carbon nanotube polymer composites. Organic Electronics, 2014, vol. 15, no. 11, pp. 2734–2741. doi: 10.1016/j.orgel.2014.07.043.
  16. Ning N., Ji L., Zhang L., Liu J., Lu Y., Wu S., Zou H., Tian M., Chan T.W. High elasticity and conductivity of elastomer composites with arrayed carbon nanotubes as nanosprings. Composites Science and Technology, 2015, vol. 118, pp. 78–84. doi: 10.1016/j.compscitech.2015.08.012.
  17. Ali I., AlGarni T.S., Shchegolkov A., Shchegolkov A., Jang S.-H., Galunin E., Komarov F., Borovskikh P., Imanova G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers. Polymer Bulletin, 2021, vol. 78, no. 11, pp. 6689–6703. doi: 10.1007/s00289-020-03483-y.
  18. Shchegolkov A.V., Shchegolkov A.V., Komarov F.F., Parfimovich I.D. The use of elastomers modified with carbon nanotubes when creating self-regulating electric heaters and materials for protection against electromagnetic radiation. Rossiyskiy khimicheskiy zhurnal, 2020, vol. 64, no. 4, pp. 39–45. doi: 10.6060/rcj.2020644.4.
  19. Shchegolkov A.V. The comparative analysis of thermal effects in elastomers modified with MCNT at constant dc voltage. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2021, no. 1, pp. 63–73. doi: 10.18323/2073-5073-2021-1-63-73.
  20. Shchegolkov A.V., Komarov F.F., Parfimovich I.D., Milchanin O.V., Shchegolkov A.V., Khrobak A.V., Semenkova A.V. The influence of carbon nanotubes on the electric conductivity of thermosetting plastics and elastomers. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2020, no. 3, pp. 65–72. doi: 10.18323/2073-5073-2020-3-65-72.
  21. Xu F., Aouraghe M.A., Xie X., Zheng L., Zhang K., Fu K.K. Highly stretchable, fast thermal response carbon nanotube composite heater. Composites Part A: Applied Science and Manufacturing, 2021, vol. 147, article number 106471. doi: 10.1016/j.compositesa.2021.106471.
  22. Yan J., Kim B., Jeong Y.G. Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. Journal of Materials Science, 2015, vol. 50, no. 16, pp. 5599–5608. doi: 10.1007/s10853-015-9110-1.
  23. Jeong Y.G., Jeon G.W. Microstructure and performance of multiwalled carbon nanotube/m-aramid composite films as electric heating elements. ACS Applied Materials and Interfaces, 2013, vol. 5, no. 14, pp. 6527–6534. doi: 10.1021/am400892k.
  24. Yan J., Jeong Y.G. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements. Applied Physics Letters, 2014, vol. 105, no. 5, article number 051907. doi: 10.1063/1.4892545.
  25. Yan J., Kim B., Jeong Y.G. Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. Journal of Materials Science, 2015, vol. 50, no. 16, pp. 5599–5608. doi: 10.1007/s10853-015-9110-1.
  26. Yan J., Jeong Y.G. Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials. Materials & Design, 2015, vol. 86, pp. 72–79. doi: 10.1016/j.matdes.2015.07.089.
  27. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon, 2016, vol. 110, pp. 343–349. doi: 10.1016/j.carbon.2016.09.016.
  28. Lee T.-W., Lee S.-E., Jeong Y.-G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Composites Science and Technology, 2016, vol. 131, pp. 77–87. doi: 10.1016/j.compscitech.2016.06.003.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies