The structure and mechanical properties of biomedical magnesium alloy Mg–1%Zn–0.2%Ca

Cover Page

Cite item

Full Text

Abstract

It is known, that magnesium-based alloys are the appropriate materials to be used as biodegradable metals to produce new-generation medical implants. Magnesium can decompose in the human body during the healing process. If dissolution is controlled, there is no need in additional operation for implant removal after healing completion. Particularly, Mg-Zn-Ca alloys are considered the most appropriate biodegradable metal implants due to their biocompatibility. In the Mg-Zn-Ca alloys, the addition of Zn and Ca as alloying elements can improve the mechanical properties and increase the corrosion resistance compared to pure Mg without affecting biocompatibility. The work covers the study of the structure and mechanical properties of the magnesium Mg-1%Zn-0.2%Ca alloy after severe plastic deformation (SPD). The research of the structure was carried out using scanning and transmission electron microscopy. The study of mechanical properties was carried out by measuring microhardness and tension tests. The study shows that applying the equal channel angular pressing (ECAP) method and additional treatment with the severe plastic deformation (SPD) method to the Mg–1%Zn–0.2%Ca alloy leads to the formation of the ultra-fine grain (UFG) structure with the average grain size of less than 1 micron. The authors identified that, as a result of strong refinement of the magnesium alloy grain structure, the ultimate strength increases twice up to 283 MPa compared to the homogenized state, when the ultimate strength is 125 MPa. At the same time, in the UFG state, the plasticity significantly decreases up to 3 %.

About the authors

Gandzhina D. Khudododova

Ufa State Aviation Technical University, Ufa

Author for correspondence.
Email: khudododova.gd@gmail.com
ORCID iD: 0000-0002-1273-8518

engineer of the Science Research Institute of Innovative Technologies and Materials

Russian Federation

Olga B. Kulyasova

Bashkir State University, Ufa

Email: elokbox@mail.ru
ORCID iD: 0000-0002-1761-336X

PhD (Engineering), senior researcher of the Laboratory of Multifunctional Materials

Russian Federation

Ruslan K. Nafikov

Ufa State Aviation Technical University, Ufa

Email: nafickov.ruslan2011@yandex.ru
ORCID iD: 0000-0003-1280-6258

engineer of the Youth Research Laboratory of the REC “Metals and Alloys under Extreme Impacts”

Russian Federation

Rinat K. Islamgaliev

Уфимский государственный авиационный технический университет, Уфа

Email: rinatis@mail.ru
ORCID iD: 0000-0002-6234-7363

Doctor of Sciences (Physics and Mathematics), Professor, professor of Chair of Materials Science and Physics of Metals

Russian Federation

References

  1. Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh. Ob’emnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya [Multidimensional nanostructured materials: fundamental principles and applications]. Sankt Petersburg, Eko-Vektor Publ., 2017. 479 p.
  2. Shi X., Li W., Hu W., Tan Y., Zhang Zh., Tian L. Effect of ECAP on the Microstructure and Mechanical Properties of a Rolled Mg-2Y-0.6Nd-0.6Zr. Magnesium Alloy. Crystals, 2019, vol. 9, no. 11, article number 586. doi: 10.3390/cryst9110586.
  3. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM, 2016, vol. 68, no. 4, pp. 33–39. doi: 10.1007/S11837-006-0213-7.
  4. Agnew S.R., Duygulu O. A mechanistic understanding of the formability of magnesium: Examining the role of temperature on the deformation mechanisms. Materials Science Forum, 2003, vol. 419-422, no. 1, pp. 177–188. doi: 10.4028/ href='www.scientific.net/MSF.419-422.177' target='_blank'>www.scientific.net/MSF.419-422.177.
  5. Lin J., Ren W., Wang Q., Ma L., Chen Y. Influence of grain size and texture on the yield strength of Mg alloys processed by severe plastic deformation. Advances in Materials Science and Engineering, 2014, vol. 2014, pp. 356–572. doi: 10.1155/2014/356572.
  6. Figueiredo R.B., Langdon T.G. Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. Journal of Materials Science, 2010, vol. 45, no. 17, pp. 4827–4836. doi: 10.1007/s10853-010-4589-y.
  7. Ding S.X., Chang C.P., Kao P.W. Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, vol. 40, no. 2, pp. 415–425. doi: 10.1007/s11661-008-9747-3.
  8. Yamashita A., Horita Z., Langdon T.G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A, 2001, vol. 300, no. 1-2, pp. 142–147. doi: 10.1016/S0921-5093(00)01660-9.
  9. Kulyasova O., Islamgaliev R., Mingler B., Zehetbauer M. Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing. Materials Science and Engineering A, 2009, vol. 503, no. 1-2, pp. 176–180. doi: 10.1016/j.msea.2008.03.057.
  10. Li W., Guan S., Chen J., Hu J., Chen S., Wang L., Zhu S. Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradation Mg–Zn–Ca alloy. Materials Characterization, 2011, vol. 62, no. 12, pp. 1158–1165. doi: 10.1016/j.matchar.2011.07.005.
  11. Gong Ch., He X., Yan X. Corrosion behavior of Mg–Ca–Zn alloys with high Zn content. Journal of Physics and Chemistry of Solids, 2021, vol. 152, article number 109952. doi: 10.1016/j.jpcs.2021.109952.
  12. Kim W.C., Kim J.G., Lee J.Y., Seol H.K. Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 2008, vol. 62, no. 25, pp. 4146–4148. doi: 10.1016/j.matlet.2008.06.028.
  13. Parfenov E.V., Kulyasova O.B., Mukaeva V.R., Mingo B., Farrakhov R.G., Cherneikina Ya.V., Yerokhin A., Zheng Y.F., Valiev R.Z. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science, 2020, vol. 163, article number 108303. doi: 10.1016/j.corsci.2019.108303.
  14. Akash G., Chandrasekhar B., Saxena K.K. Effect of equal-channel angular pressing on mechanical properties: An overview. Materials Today: Proceedings, 2021, vol. 45, pp. 5602–5607. doi: 10.1016/J.MATPR.2021.02.317.
  15. Cihova M., Martinelli E., Schmutz P., Myrissa A., Schäublin R., Weinberg A.M., Uggowitzer P.J., Löffler J.F. The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. Acta Biomaterialia, 2019, vol. 100, pp. 398–414. doi: 10.1016/j.actbio.2019.09.021.
  16. Ma Y.Z., Yang C.L., Liu Y.J., Yuan F.-S., Liang S.S., Li H.X., Zhang J.S. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys. International Journal of Minerals, Metallurgy and Materials, 2019, vol. 26, no. 10, pp. 1274–1284 doi: 10.1007/s12613-019-1860-3.
  17. Vinogradov A.Yu., Vasilev E.V., Linderov M.L., Merson D.L., Rzhevskaya E.O. He influence of equal channel angular pressing on the structure and mechanical properties of magnesium Mg-Zn-Ca alloys. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2015, no. 4, pp. 18–24. doi: 10.18323/2073-5073-2015-4-18-24.
  18. Tong L.B., Zheng M.Y., Chang H., Hu X.C., Wu K., Xu S.W., Kamado S., Kojima Y. Microstructure and mechanical properties of Mg-Zn-Ca alloy processed by equal channel angular pressing. Materials and Engineering A, 2009, vol. 523, no. 1-2, pp. 289–294. doi: 10.1016/j.msea.2009.06.021.
  19. Zhang B., Hou Y., Wang X., Wang Y., Geng L. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Materials Science and Engineering C, 2011, vol. 31, no. 8, pp. 1667–1673. doi: 10.1016/j.msec.2011.07.015.
  20. Sun Y., Zhang B., Wang Y., Geng L., Jiao X. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials and Design, 2012, vol. 34, pp. 58–64. doi: 10.1016/j.matdes.2011.07.058.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies