Structure effect on the kinetics and staging of the corrosion process of biodegradable ZX10 and WZ31 magnesium alloys

Cover Page

Cite item

Full Text

Abstract

Biodegradable magnesium alloys are one of the most promising materials for osteosynthesis surgical implants due to the combination of unique properties: high strength, low weight, Young’s modulus close to the bone’s one, and low cytotoxicity. The most important performance characteristic is the corrosion rate, which determines the lifetime of an implant. At the moment, the main efforts of the researchers are aimed at finding a material with optimal corrosion properties ensuring the preservation of the operational properties of an implant during the bone healing period. Most of the works on this issue cover the study of the influence of the alloy chemical composition. At the same time, it is widely known that the structure of a material can also have a great effect on corrosion, for example, grain refinement can even change its type. Besides, it is important that the materials with the same quantitative parameters of corrosion can be substantially different in terms of the corrosion process staging. The authors studied the WZ31 and ZX10 magnesium alloys in two states: as-cast (coarse-grained) and after multi-axial isothermal forging and pressing (fine-grained), using the up-to-date in-situ methods that allow monitoring the dynamics of changes in the corrosion rate, as well as the staging of the corrosion damage development on the sample surface. Such methods are the corrosion rate measuring by hydrogen evolution and the sample’s surface video-monitoring during the corrosion attack. The authors carried out tests within the conditions similar to the human body conditions, such as temperature, the corrosion environment composition, and pH level. The obtained results show that the type of corrosion of the WZ31 alloy changes with the decrease in the grain size from a relatively uniform to a highly localized corrosion. In contrast, the ZX10 alloy showed a decrease in the corrosion rate with the decreasing grain size, but the corrosion type did not change.

About the authors

Pavel N. Myagkikh

Togliatti State University, Togliatti

Author for correspondence.
Email: feanorhao@gmail.com
ORCID iD: 0000-0002-7530-9518

junior researcher of the Research Institute of Advanced Technologies

Russian Federation

Evgeniy D. Merson

Togliatti State University, Togliatti

Email: mersoned@gmail.com
ORCID iD: 0000-0002-7063-088X

PhD (Physics and Mathematics), senior researcher of the Research Institute of Advanced Technologies

Russian Federation

Vitaliy A. Poluyanov

Togliatti State University, Togliatti

Email: vitaliy.poluyanov@gmail.com
ORCID iD: 0000-0002-0570-2584

PhD (Engineering), junior researcher of the Research Institute of Advanced Technologies

Russian Federation

Dmitry L. Merson

Togliatti State University, Togliatti

Email: D.Merson@tltsu.ru
ORCID iD: 0000-0001-5006-4115

Doctor of Sciences (Physics and Mathematics), Professor, Director of the Research Institute of Advanced Technologies

Russian Federation

References

  1. Zheng J., Chen Z., Yan Z., Zhang Z., Wang Q., Xue Y. Preparation of ultra-high strength Mg-Gd-Y-Zn-Zr alloy by pre-ageing treatment prior to extrusion. Journal of Alloys and Compounds, 2022, vol. 894, article number 162490. doi: 10.1016/j.jallcom.2021.162490.
  2. Merson D., Brilevsky A., Myagkikh P., Tarkova A., Prokhorikhin A., Kretov E., Frolova T., Vinogradov A. The functional properties of Mg-Zn-X biodegradable magnesium alloys. Materials, 2020, vol. 13, no. 3, article number 544. doi: 10.3390/ma13030544.
  3. Li Y., Li M., Hu W., Hodgson P., Wen C. Biodegradable Mg-Ca and Mg-Ca-Y alloys for regenerative medicine. Materials Science Forum, 2010, vol. 654–656, pp. 2192–2195. doi: 10.4028/ href='www.scientific.net/MSF.654-656.2192' target='_blank'>www.scientific.net/MSF.654-656.2192.
  4. Gu X.N., Xie X.H., Li N., Zheng Y.F., Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 2012, vol. 8, no. 6, pp. 2360–2374. doi: 10.1016/j.actbio.2012.02.018.
  5. Thormann U., Alt V., Heimann L., Gasquere C., Heiss C., Szalay G., Franke J., Schnettler R., Lips K.S. The biocompatibility of degradable magnesium interference screws: An experimental study with sheep. BioMed Research International, 2015, vol. 2015, article number 943603. doi: 10.1155/2015/943603.
  6. Merson D.L., Brilevsky A.I., Myagkikh P.N., Markushev M.V., Vinogradov A. Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid. Letters on Materials, 2020, vol. 10, no. 2, pp. 217–222. doi: 10.22226/2410-3535-2020-2-217-222.
  7. Asgari M., Hang R., Wang C., Yu Z., Li Z., Xiao Y. Biodegradable metallicwires in dental and orthopedic applications: A review. Metals, 2018, vol. 8, no. 4, article number 212. doi: 10.3390/met8040212.
  8. Prakasam M., Locs J., Salma-Ancane K., Loca D., Largeteau A., Berzina-Cimdina L. Biodegradable materials and metallic implants-A review. Journal of Functional Biomaterials, 2017, vol. 8, no. 4, article number 44. doi: 10.3390/jfb8040044.
  9. Antoniac I., Popescu D., Zapciu A., Antoniac A., Miculescu F., Moldovan H. Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials, 2019, vol. 12, no. 5, article number 719. doi: 10.3390/ma12050719.
  10. Myagkikh P.N., Merson E.D., Poluyanov V.A., Merson D.L. In-situ study of the corrosion process of biodegradable magnesium alloys. Science Vector of Togliatti State University, 2021, no. 2, pp. 18–25. doi: 10.18323/2073-5073-2021-2-18-25.
  11. Pogorielov M., Husak E., Solodivnik A., Zhdanov S. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements. Interventional Medicine and Applied Science, 2017, vol. 9, no. 1, pp. 27–38. doi: 10.1556/1646.9.2017.1.04.
  12. Peron M., Torgersen J., Berto F. Mg and its alloys for biomedical applications: Exploring corrosion and its interplay with mechanical failure. Metals, 2017, vol. 7, no. 7, article number 252. doi: 10.3390/met7070252.
  13. Ding Y., Wen C., Hodgson P., Li Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. Journal of Materials Chemistry B, 2014, vol. 2, no. 14, pp. 1912–1933. doi: 10.1039/c3tb21746a.
  14. Brar H.S., Wong J., Manuel M.V. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, vol. 7, pp. 87–95. doi: 10.1016/j.jmbbm.2011.07.018.
  15. Wang C., Yang H.T., Li X., Zheng Y.F. In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals. Journal of Materials Science and Technology, 2016, vol. 32, no. 9, pp. 909–918. doi: 10.1016/j.jmst.2016.06.003.
  16. Li K.K., Wang B., Yan B., Lu W. Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior. Chinese Science Bulletin, 2012, vol. 57, no. 18, pp. 2319–2322. doi: 10.1007/s11434-012-5067-5.
  17. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, vol. 49, no. 4, pp. 1696–1701. doi: 10.1016/j.corsci.2007.01.001.
  18. Xin Y., Liu C., Zhang X., Tang G., Tian X., Chu P.K. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research, 2007, vol. 22, no. 7, pp. 2004–2011. doi: 10.1557/jmr.2007.0233.
  19. Merson D., Linderov M., Brilevsky A., Danyuk A., Vinogradov A. Monitoring Dynamic Recrystallisation in Bioresorbable Alloy Mg-1Zn-0.2Ca by Means of an In Situ Acoustic Emission Technique. Materials, 2022, vol. 15, no. 1, article number 328. doi: 10.3390/ma15010328.
  20. Parfenov E.V., Kulyasova O.B., Mukaeva V.R., Mingo B., Farrakhov R.G., Cherneikina Ya.V., Erokhin A., Zheng Y.F., Valiev R.Z. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corrosion Science, 2020, vol. 163, article number 108303. doi: 10.1016/j.corsci.2019.108303.
  21. Zhang X., Ba Z., Wang Q., Wu Y., Wang Z., Wang Q. Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corrosion Science, 2014, vol. 88, pp. 1–5. doi: 10.1016/j.corsci.2014.07.004.
  22. Li C.Q., Xu D.K., Zeng Z.R., Wang B.J., Sheng L.Y., Chen X.-B., Han E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Materials and Design, 2017, vol. 121, pp. 430–441. doi: 10.1016/j.matdes.2017.02.078.
  23. Zong X., Zhang J., Liu W., Zhang Y., You Z., Xu C. Corrosion Behaviors of Long-Period Stacking Ordered Structure in Mg Alloys Used in Biomaterials: A Review. Advanced Engineering Materials, 2018, vol. 20, no. 7, article number 1800017. doi: 10.1002/adem.201800017.
  24. Horváth K., Drozdenko D., Máthis K., Garcés G., Dobroň P. Characterization of active deformation mechanisms in Mg alloys with LPSO phase. Acta Physica Polonica A, 2018, vol. 134, no. 3, pp. 815–819. doi: 10.12693/APhysPolA.134.815.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies