Influence of dislocation and twin structures on the mechanical characteristics of Ni–Mn–Ga alloys at ultrasonic frequencies

Cover Page

Cite item

Full Text

Abstract

Magnetic shape memory alloys are a specific subtype of shape memory materials. The magnetic deformation phenomenon causes the high research interest in these alloys. Thus, in one of the most promising alloys based on Ni–Mn–Ga, using a magnetic field, it is possible to achieve changes in a single crystal size by up to 10 % due to the reorientation of the magnetic field in magnetic domains. The high magnetic deformation is directly related to the high mobility of twin boundaries separating two domains. In this work, the authors used a composite piezoelectric oscillator at a frequency of about 100 kHz to determine the influence of such defects as dislocations and twin boundaries on the mechanical characteristics of Ni49Mn30Ga21. The authors investigated the features of temperature dependences of internal friction in the samples before and after deformation and provided the amplitude dependences of these characteristics. In the studied single-crystal martensitic phase, the transition from the tetragonal phase to the orthorhombic phase was detected at 235 K. In the Ni–Mn–Ga tetragonal phase, the formation of new defects contributes to the more pronounced and early onset of amplitude-dependent internal friction. At lower loads, the successive stages occur associated with the processes of dislocations and twin boundaries movements inside the Cottrell clouds, dislocations and twin boundaries movement outside the Cottrell clouds, and supposedly, the slowdown of dislocations and twin boundaries movement due to their interaction. As well as internal friction, the authors studied the change in Young’s modulus. Its decrease at all temperatures is most pronounced in the samples with the defective structures. The study identified that in the orthorhombic phase, it is possible to observe the internal friction dependence on the deformation amplitude at a lower load due to an increase in the twin boundaries mobility with increasing temperature.

About the authors

Vladimir V. Kaminskii

ITMO University, Saint Petersburg

Author for correspondence.
Email: kam-vladimiro@yandex.ru
ORCID iD: 0000-0002-4388-2459

postgraduate student of the Institute of Advanced Data Transfer Systems

Russian Federation

Dmitriy A. Kalganov

ITMO University, Saint Petersburg

Email: kalganov@itmo.ru
ORCID iD: 0000-0003-1986-3693

graduate student of the Institute of Advanced Data Transfer Systems

Russian Federation

Ekaterina Podlesnov

ITMO University, Saint Petersburg

Email: kalganov@itmo.ru
ORCID iD: 0000-0002-0520-9407

postgraduate student of the Institute of Advanced Data Transfer Systems

Russian Federation

Alexey E. Romanov

ITMO University, Saint Petersburg

Email: alexey.romanov@niuitmo.ru
ORCID iD: 0000-0003-3738-408X

Doctor of Sciences (Physics and Mathematics), Professor, professor of the Institute of Advanced Data Transfer Systems

Russian Federation

References

  1. Straka L., Heczko O., Seiner H., Lanska N., Drahokoupil J., Soroka A., Fahler S., Hanninen H., Sozinov A. Highly mobile twinned interface in 10 M modulated Ni-Mn-Ga martensite: Analysis beyond the tetragonal approximation of lattice. Acta Materialia, 2011, vol. 59, no. 20, pp. 7450 7463. doi: 10.1016/j.actamat.2011.09.020.
  2. Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Applied Physics Letters, 2002, vol. 80, no. 10, pp. 1746 1748. doi: 10.1063/1.1458075.
  3. Acet M., Mañosa Ll., Planes A. Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. Handbook of magnetic materials, 2011, vol. 19, no. C, pp. 231 289. doi: 10.1016/B978-0-444-53780-5.00004-1.
  4. Kustov S., Saren A., Sozinov A., Kaminskii V., Ullakko K. Ultrahigh damping and Young’s modulus softening due to a/b twins in 10M Ni-Mn-Ga martensite. Scripta Materialia, 2020, vol. 178, pp. 483 488. doi: 10.1016/j.scriptamat.2019.12.024.
  5. Saren A., Sozinov A., Kustov S., Ullakko K. Stress-induced a/b compound TWINS redistribution in 10M Ni-Mn-Ga martensite. Scripta Materialia, 2020, vol. 175, pp. 11 15. doi: 10.1016/j.scriptamat.2019.09.001.
  6. Kustov S., Saren A., D’Agosto B., Sapozhnikov K., Nikolaev V., Ullakko K. Transitory Ultrasonic Absorption in “Domain Engineered” Structures of 10 M Ni-Mn-Ga Martensite. Metals, 2021, vol. 11, no. 10, article number 1505. doi: 10.3390/met11101505.
  7. Robinson W.H., Carpenter S.H., Tallon J.L. Piezoelectric method of determining torsional mechanical damping between 40 and 120 kHz. Journal of Applied Physics, 1974, vol. 45, no. 5, pp. 1975 1981. doi: 10.1063/1.1663533.
  8. Kustov S., Golyandin S., Ichino A., Gremaud G. A new design of automated piezoelectric composite oscillator technique. Materials Science and Engineering: A, 2006, vol. 442, no. 1-2, pp. 532 537. doi: 10.1016/j.msea.2006.02.230.
  9. Kaminskii V.V., Lyubimova Y.V., Romanov A.E. Probing of polycrystalline magnesium at ultrasonic frequencies by mechanical spectroscopy. Mater Physics and Mechanics, 2020, vol. 44, no. 1, pp. 19–25. doi: 10.18720/MPM.4412020_3.
  10. Benito J.A., Manero J.M., Jorba J., Roca A. Change of Young’s modulus of cold-deformed pure iron in a tensile test. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, vol. 36, no. 12, pp. 3317 3324. doi: 10.1007/s11661-005-0006-6.
  11. Lanska N., Soderberg O., Sozinov A., Ge Y., Ullakko K., Lindroos V.K. Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. Journal of Applied Physics, 2004, vol. 95, no. 12, pp. 8074 8078. doi: 10.1063/1.1748860.
  12. Cesari E., Chernenko V.A., Kokorin V.V., Pons J., Segui C. Internal friction associated with the structural phase transformations in Ni-Mn-Ga alloys. Acta materialia, 1997, vol. 45, no. 3, pp. 999 1004. doi: 10.1016/S1359-6454(96)00244-3.
  13. Chang S.H., Wu S.K. Low-frequency damping properties of near-stoichiometric Ni2MnGa shape memory alloys under isothermal conditions. Scripta Materialia, 2008, vol. 59, no. 10, pp. 1039 1042. doi: 10.1016/j.scriptamat.2008.07.006.
  14. Kustov S., Corró M.-L., Kaminskii V., Saren A., Sozinov A., Ullakko K. Elastic and anelastic phenomena related to eddy currents in cubic Ni2MnGa. Scripta Materialia, 2018, vol. 147, pp. 69 73. doi: 10.1016/j.scriptamat.2018.01.003.
  15. Sapozhnikov K., Kustov B., Krymov V., Nikolaev V. Anelasticity of the martensitic phase of Ni55Fe18Ga27 single crystals in hyperstabilized and nonstabilized states. Journal of Alloys and Compounds, 2022, vol. 908, article number 164528. doi: 10.1016/j.jallcom.2022.164528.
  16. Kustov S., Liubimova Iu., Salje E.K.H. LaAlO3: A substrate material with unusual ferroelastic properties. Applied Physics Letters, 2018, vol. 112, no. 4, article number 042902. doi: 10.1063/1.5017679.
  17. Sapozhnikov K., Golyandin S., Kustov S., Van Humbeeck J., De Batist R. Motion of dislocations and interfaces during deformation of martensitic Cu–Al–Ni crystals. Acta materialia, 2000, vol. 48, no. 5, pp. 1141 1151. doi: 10.1016/S1359-6454(99)00374-2.
  18. Kustov S., Sapozhnikov K., Wang X. Phenomena associated with diffusion, assisted by moving interfaces in shape memory alloys: A review of our earlier studies. Functional Materials Letters, 2017, vol. 10, no. 1, article number 1740010. doi: 10.1142/S1793604717400100.
  19. Heczko O., Straka L., Seiner H. Different microstructures of mobile twin boundaries in 10 M modulated Ni-Mn-Ga martensite. Acta materialia, 2013, vol. 61, no. 2, pp. 622 631. doi: 10.1016/j.actamat.2012.10.007.
  20. Sozinov A., Likhachev A.A., Lanska N., Söderberg O., Ullakko K., Lindroos V.K. Stress-and magnetic-field-induced variant rearrangement in Ni–Mn–Ga single crystals with seven-layered martensitic structure. Materials Science and Engineering: A, 2004, vol. 378, no. 1-2, pp. 399 402. doi: 10.1016/j.msea.2003.10.365.
  21. L’vov V.A., Glavatska N., Aaltio I., Söderberg O., Glavatskyy I., Hannula S.-P. The role of anisotropic thermal expansion of shape memory alloys in their functional properties. Acta materialia, 2009, vol. 57, no. 18, pp. 5605 5612. doi: 10.1016/j.actamat.2009.07.058.
  22. Lebedev A.B., Kustov S.B., Kardashev B.K. On internal-friction and young modulus defect during crystal deformation. Fizika tverdogo tela, 1992, vol. 34, no. 9, pp. 2915–2921.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies