Simulation of the surface defects influence on the aluminum alloy behaviour under the cyclic load conditions

Cover Page

Cite item

Full Text

Abstract

Aluminum and its alloys, such as the Al–Si–Mg alloy, are widely used in various industrial and engineering fields due to their mechanical properties. In this case, the defects occurring during the casting process adversely affect the behavior of this alloy under cyclic load conditions. Therefore, the study aimed to investigate the surface defect influence on the material's fatigue strength is currently of great importance. The paper presents a numerical investigation based on the finite element method intended to evaluate the effect of the interaction of the complex-shaped defects on the stress of the Al–Si–Mg aluminum alloy. The developed complex-defect model consists of a hemispherical main (base) defect and a secondary defect at the bottom of the main one. The authors use the Chaboche model to describe the material’s behavior under the cyclic load conditions. The paper contains the computational solution constructed with the ANSYS Workbench platform. The authors supposed that it is possible to approximate the considered complex defect form by an equivalent simplified defect. The study shows that the maximum von Mises stress values for the complex-shaped defects are achieved at the joint of the secondary defect with the main one. In the case of an equivalent defect, the maximum values are observed at the defect's bottom and on the periphery. The authors comparatively estimated the uncertainty obtained using an equivalent defect and the cases of three complex-shaped defects and three hemispherical defects without additional (secondary) damage. This estimation shows that in the case of a complex-shaped defect, the equivalent defect model has an error of 14.5 %, which is 6.5 % greater than in the case of the hemispherical defects without secondary damages at the bottom.

About the authors

Liana A. Almazova

Saint Petersburg State University, Saint Petersburg

Author for correspondence.
Email: st080595@student.spbu.ru
ORCID iD: 0000-0001-8695-3598

student

Russian Federation

Olga S. Sedova

Saint Petersburg State University, Saint Petersburg

Email: fake@neicon.ru
ORCID iD: 0000-0001-9097-8501

PhD (Physics and Mathematics), assistant professor of Chair of Computer Techniques of Solids Mechanics

Russian Federation

References

  1. Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Chennai, Academic Press Publ., 2019. 734 p. doi: 10.1016/C2016-0-05272-5.
  2. Leitner M., Murakami Y., Farajian M., Remes H., Stoschka M. Fatigue Strength Assessment of Welded Mild Steel Joints Containing Bulk Imperfections. Metals, 2018, vol. 8, no. 5, article number 306. doi: 10.3390/met8050306.
  3. Mu P., Nadot Y., Serrano-Munoz I., Chabod A. Influence of complex defect on cast AS7G06-T6 under multiaxial fatigue loading. Engineering Fracture Mechanics, 2014, vol. 123, pp. 148–162. doi: 10.1016/j.engfracmech.2014.02.012.
  4. Cerit M., Genel K., Eksi S. Numerical investigation on stress concentration of corrosion pit. Engineering failure analysis, 2009, vol. 16, no. 7, pp. 2467–2472. doi: 10.1016/j.engfailanal.2009.04.004.
  5. Zhao W., Huang Y.F., Ye X.B., Hu B.R., Liu J.Z., Chen L.J. Correlation between the Geometric Parameters of Corrosion Pit and Stress Concentration Factor. Applied Mechanics and Materials, 2013, vol. 327, pp. 156–160. doi: 10.4028/ href='www.scientific.net/AMM.327.156' target='_blank'>www.scientific.net/AMM.327.156.
  6. Genel K., Demirkol M., Gülmez T. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel. Materials Science and Engineering A, 2000, vol. 288, no. 1, pp. 91–100. doi: 10.1016/S0921-5093(00)00835-2.
  7. Cerit M. Corrosion pit-induced stress concentration in spherical pressure vessel. Thin-Walled Structures, 2019, vol. 136, pp. 106–112. doi: 10.1016/j.tws.2018.12.014.
  8. Mitenkov F.M., Volkov I.A., Igumnov L.A., Kaplienko A.V., Korotkikh Yu.G., Panov V.A. Prikladnaya teoriya plastichnosti [Applied theory of plasticity]. Moscow, Fizmatlit Publ., 2015. 282 p.
  9. Volkov I.A., Igumnov L.A., Korotkikh Yu.G. Prikladnaya teoriya vyazkoplastichnosti [Applied Theory of Viscoplasticity]. Nizhniy Novgorod, Nizhnegorodskiy universitet imeni N.I. Lobachevskogo Publ., 2015. 318 p.
  10. Bondar V.S., Danshin V.V., Kandratenko A.A. Variant of thermoviscoplasticity theory. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2016, no. 1, pp. 39–56. doi: 10.15593/perm.mech/2016.1.03.
  11. Chaboche J.L. A review of some plasticity and viscoplasticity constitutive theories. International Journal of Plasticity, 2008, vol. 24, no. 10, pp. 1642–1692. doi: 10.1016/j.ijplas.2008.03.009.
  12. Chaboche J.L., Kanouté P., Azzouz F. Cyclic inelastic constitutive equations and their impact on the fatigue life predictions. International Journal of Plasticity, 2012, vol. 35, pp. 44–66. doi: 10.1016/j.ijplas.2012.01.010.
  13. Bondar V.S., Abashev D.R. Some features of monotonic and cyclic loadings. Experiment and modeling. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2019, no. 2, pp. 25–34. doi: 10.15593/perm.mech/2019.2.03.
  14. Gorokhov V.A. Developing a plasticity model with combined hardening for studying deformation processes in structural materials under various low-cycle loading modes. Problemy prochnosti i plastichnosti, 2018, vol. 80, no. 2, pp. 180–193. doi: 10.32326/1814-9146-2018-80-2-180-193.
  15. Sedova O.S., Khaknazarova L.A. Stress analysis of a notched thick spherical member. Protsessy upravleniya i ustoychivost, 2014, vol. 1, no. 1, pp. 212–217. doi: 10.18323/2073-5073-2020-2-68-73.
  16. Vakaeva A.B., Krasnitckii S.A., Smirnov A.M., Grekov M.A., Gutkin M.Y. Stress concentration and distribution at triple junction pores of three-fold symmetry in ceramics. Reviews on Advanced Materials Science, 2018, vol. 57, no. 1, pp. 63–71. doi: 10.1515/rams-2018-0048.
  17. Vakaeva A.B., Grekov M.A. Stress-strain state of an elastic body with a nearly circular hole incorporating surface stress. Protsessy upravleniya i ustoychivost, 2015, vol. 2, no. 1, pp. 125–130.
  18. Åman M., Berntsson K., Marquis G. An efficient stress intensity factor evaluation method for interacting arbitrary shaped 3D cracks. Theoretical and Applied Fracture Mechanics, 2020, vol. 109, article number 102767. doi: 10.1016/j.tafmec.2020.102767.
  19. Okulova D.D., Sedova O.S., Pronina Y.G. The Effect of Surface Defects Interaction on the Strength of a Pressurised Spherical Shell. Procedia Structural Integrity, 2021, vol. 33, no. C, pp. 1055–1064. doi: 10.1016/j.prostr.2021.10.117.
  20. Ben Ahmed A., Houria M.I., Fathallah R., Sidhom H. The effect of interacting defects on the HCF behavior of Al-Si-Mg aluminum alloys. Journal of Alloys and Compounds, 2019, vol. 779, pp. 618–629. doi: 10.1016/j.jallcom.2018.11.282.
  21. Yamashita Y., Murakami T., Mihara R., Okada M., Murakami Y. Defect analysis and fatigue design basis for Ni‐based Superalloy 718 manufactured by selective laser melting. International Journal of Fatigue, 2018, vol. 117, pp. 485–495. doi: 10.1016/j.ijfatigue.2018.08.002.
  22. Beretta S., Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 2017, vol. 94, pp. 178–191. doi: 10.1016/j.ijfatigue.2016.06.020.
  23. Le V.D., Saintier N., Morel F., Bellett D., Osmond P. Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography. International Journal of Fatigue, 2018, vol. 106, pp. 24–37. doi: 10.1016/j.ijfatigue.2017.09.012.
  24. Ben Ahmed A., Nasr A., Bahloul A., Fathallah R. The impact of defect morphology, defect size, and SDAS on the HCF response of A356-T6 alloy. The International Journal of Advanced Manufacturing Technology, 2017, vol. 92, no. 1, pp. 1113–1125. doi: 10.1007/s00170-017-0192-6.
  25. Serrano-Munoz I., Buffiere J.Y., Mokso R., Verdu C., Nadot Y. Location, location & size: defects close to surfaces dominate fatigue crack initiation. Scientific Reports, 2017, vol. 7, article number 45239. doi: 10.1038/srep45239.
  26. Luetje M., Wicke M., Bacaicoa I., Brueckner-Foit A., Geisert A., Fehlbier M. 3D characterization of fatigue damage mechanisms in a cast aluminum alloy using X-ray tomography. International Journal of Fatigue, 2017, vol. 103, pp. 363–370. doi: 10.1016/j.ijfatigue.2017.06.020.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies