THE ASSESSMENT OF IMPACT OF CARBONITRIDING ON THE LOCATION OF COLD-BRITTLENESS THRESHOLD IN THE MEDIUM-CARBON ALLOY STEELS


Cite item

Full Text

Abstract

Last 10–15 years, in the world industrial practice, a great interest for the processes of low-temperature saturation of iron alloys with the nitrogen or with the nitrogen and carbon is observed. The galloping technology – carbonitriding – is one of such methods. The key point of the process is in the simultaneous saturation of steel surface with the nitrogen and carbon in the molten salts at a temperature of 540...580 °C. In the result of carbonitriding, high hardness is achieved on the product surface, and the wear-resistance, fatigue strength and stain-resistance increase.

However, despite the significant achievements in this direction, many issues are still not clarified or remain a subject of discussions, including the influence of heating temperature for carbonitriding on the possibility of the reversible temper brittleness manifestation in the medium-carbon alloy steels. In this paper, the impact of carbonitriding on the properties of base metal, in particular, its tendency to brittle fracture was studied. The authors determined the change of location of cold-brittleness threshold in the 30HGSA, 40HN2MA, 38HMA, and 40G2 steels both in the initial condition and after carbonitriding. Using the method of fractographic analysis, the authors determined the nature of fracture of steel study specimens and evaluated the shear area fraction of impact specimens. It is shown, that the tendency to temper embrittlement in the study steels is different and depends significantly on their chemical composition. The paper presents the results of field tests of drill pipes with screw joints made of 30HGSA, 40HN2MA, 38HMA, and 40G2 steels in various climatic zones. The authors recommend steels to produce tool joints for drill pipes using the carbonitriding methods for the thread face-hardening for the operation at low temperatures.        

About the authors

Anna Viktorovna Stepanchukova

ZBO Drill Industries Inc., Orenburg

Author for correspondence.
Email: annastep56@zbo.ru

engineer-metallurgist of Laboratory “Metallurgical science and heat treatment”

Russian Federation

Elena Yurievna Priymak

ZBO Drill Industries Inc., Orenburg

Email: elena-pijjmak@yandex.ru

PhD (Engineering), Head of Laboratory “Metallurgical science and heat treatment”

Russian Federation

Irina Leonidovna Yakovleva

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg

Email: labmet@imp.uran.ru

Doctor of Sciences (Engineering), chief researcher

Russian Federation

Natalya Adolfovna Tereshchenko

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg

Email: labmet@imp.uran.ru

PhD (Engineering), senior researcher

Russian Federation

Evgeniy Yurievich Chirkov

ANO “Technopark of OSU”, Orenburg

Email: chirkov_jenya@mail.ru

PhD (Engineering), level II destructive testing specialist of Laboratory “Reliability”

Russian Federation

References

  1. Priymak E.Yu., Zelenin A.P., Stepanchukova A.V. The experience of application of carbonization to improve the durability of threaded connections of drill pipes in the conditions of ZBO Drill Industries. Materialy 15-oy Mezhdunar. nauch.-prakt. konferentsii “Tekhnologiya uprochneniya, naneseniya pokrytiy i remonta: teoriya i praktika”. Sankt Petersburg, 2013, pp. 245–250.
  2. Musanov A.A. Sovershenstvovanie bureniya skvazhin almaznymi koronkami [Improving the drilling of holes with diamond crowns]. Saarbrücken, LAP LAMBERT Publ., 2016. 60 p.
  3. Muzaparov M.Zh. Napravlennoe burenie. T. 4. Determinirovannaya tekhnologiya. Snaryady so s’emnymi kernopriemnikami [Directional drilling. Vol. 4. Deterministic technology. Shells with removable core receivers]. Almaty, KazNTU Publ., 2011. 204 p.
  4. Semin V.I. Surface hardening of tool-joint thread by a method of carbonitration. Neftyanoe khozyaystvo, 2004, no. 12, pp. 104–106.
  5. Priymak E.Yu. Characteristics of drill pipes and an overview of pipe billets used in modern geological prospecting. Chernaya metallurgiya, 2017, no. 2, pp. 70–76.
  6. Prokoshkin D.A. Khimiko-termicheskaya obrabotka metallov – karbonitratsiya [Chemical-thermal treatment of metals – carbonitration]. Moscow, Metallurgiya Publ., 1984. 240 p.
  7. Chatterjee-Fischer R., Eysell F.-W., Hoffmann R., Liedtke D., Mallener H., Rembges W., Schreiner A., Welker G. Azotirovanie i karbonitrirovanie [Wärmebehandlung von Eisenwerkstoffen. Nitrieren und Nitrocarburieren]. Moscow, Metallurgiya Publ., 1990. 280 p.
  8. Przhenosil B. Nitrotsementatsiya [Nitrocarburization]. Leningrad, Mashinostroenie Publ., 1969. 212 p.
  9. Tsikh S.G., Lisitskii V.N., Glebova Y.A., Grishin V.I., Supov A.V. Advancement of the process of carbonitriding. Metal Science and Heat Treatment, 2011, vol. 52, no. 9-10, pp. 408–412.
  10. Priymak E.Yu., Dhein E.A., Stepanchukova A.V. Comparative analysis of structure and properties of lock joints of drill pipes strengthened by method of induction hardening and carbonitriding. Tekhnologiya metallov, 2015, no. 5, pp. 18–26.
  11. Bellas L., Castro G., Mera L., Mier J.L., Garcia A., Varela A. Effect QPQ salt bath nitrocarburizing on the microstructure and performance of stainless steel 321. Metallovedenie i termicheskaya obrabotka metallov, 2016, no. 6, pp. 58–65.
  12. Priymak E.Yu., Stepanchukova A.V., Yakovleva I.L., Tereshchenko N.A. Use of carbonitriding for strengthening threaded joints of drill pipes from medium-carbon alloy steels. Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 2, pp. 38–44.
  13. Strik Yu.N., Ilyash V.V. Burenie razvedochnykh skvazhin [Drilling of exploratory wells]. Voronezh, VGU Publ., 2004. 62 p.
  14. Utevskiy L.M., Glikman E.E., Kark G.S. Obratimaya otpusknaya khrupkost stali i splavov zheleza [Reversible temper brittleness of steel and iron alloys]. Moscow, Metallurgiya Publ., 1987. 222 p.
  15. GOST 1497-84. Metally. Metody ispytaniy na rastyazhenie [Metals. Methods of tension test]. Moscow, Izdatelstvo standartov Publ., 1986. 22 p.
  16. GOST 9013-59. Metally. Metod izmereniya tverdosti po Rokvellu [Metals. Method of measuring Rockwell hardness]. Moscow, Izdatelstvo standartov Publ., 1991. 10 p.
  17. GOST 9454-78. Metally. Metod ispytaniya na udarniy izgib pri ponizhennykh, komnatnoy i povyshennykh temperaturakh [Metals. Methods for testing the impact strength at low, room and high temperature]. Moscow, Izdatelstvo standartov Publ., 1990. 10 p.
  18. Gerasimov L.P., Guk Yu.P. Kontrol kachestva konstruktsionnykh materialov [Quality control of construction materials]. Moscow, Intermet Inzhiniring Publ., 2010. 848 p.
  19. Shtremel M.A. Razrushenie. Kn. 2. Razrushenie struktur [Destruction. Book 2. Destruction of structures]. Moscow, MISiS Publ., 2015. 975 p.
  20. Brayent K.L., Benerjee S.K. Intergranular destruction of iron alloys in non-corrosive media. Okhrupchivanie konstruktsionnykh staley i splavov. Moscow, Metallurgiya Publ., 1988, pp. 29–58.
  21. Ustinovschikov Y.I., Shabanova I.N., Sapukhin V.A., Trapeznikov V.A. Embrittlement of alloy steels during tempering. Physics of metals and metallography, 1977, vol. 44, no. 2, pp. 91–99.
  22. Smith J.F., Reynolds J.H., Southworth H.N. Role of Mn in the temper embrittlement of A3,5Ni-Cr-Mo-V steel. Acta Metallurgica, 1980, vol. 28, no. 11, pp. 1555–1564.
  23. Yu J., McMahon C.J. The effect of composition and carbide precipitation on temper embrittlement of 2,25Cr-1Mo Steel: Part 1. Effects of P and Sn. Metallurgical Transactions A, 1980, vol. 11, no. 2, pp. 277–289.
  24. Drobyshevskaya I.S., Kovalev A.I., Sergeeva T.K., Litvinenko D.A. Impurity segregation, temper brittleness and hydrogen embrittlement of steel type 30HkNMA with various molybdenum contents. Metallovedenie i termicheskaya obrabotka metallov, 1995, no. 5, pp. 21–24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies