Specific features of structural-phase transformations and hardening during shear deformation under pressure of high-nitrogen steel with austenitic-ferritic structure of metal matrix

Cover Page

Cite item

Full Text

Abstract

The increased anticorrosive, strength, tribological, and physical characteristics are the specific features of steels with high nitrogen content. Searching for the ways to strengthen high-nitrogen steels is a promising area of contemporary metal science. Heat treatment is one of the methods of hardening nitrogen steels as a result of precipitation hardening with nitride particles. The authors studied the influence of short-term high-temperature aging and large plastic deformations implemented by shear under the pressure of 8 GPa (SP method) on Bridgman anvils (three revolutions of anvils with the rotation velocity of 0.3 rev/min) at room temperature on the structural-phase transformations and micromechanical properties of the 08H22GA1.24 high-nitrogen steel with the mixed γ (austenite) + a (ferrite) metal matrix structure. The study identified that aging (0.5 h) at the temperature of 650 °С of steel quenched at the temperature from 1180 °С causes the formation of the mixed austenitic-ferritic structure of metal matrix in the ratio of 50 vol. % of g and 50 vol. % of α and the release of extended secondary Cr2N chromium nitrides, together with ferrite interlayers forming the areas with the pearlite-like structure. These areas cause the increased microhardness of steel with the austenitic-ferritic matrix structure (385±8 HV 0.025) compared to one of steel aged at the temperature of 550 °С (0.5 h) and having an austenitic matrix structure strengthened with secondary CrN nitrides (364±8 HV 0.025). The SP deformation of steel aged at the temperature of 650 °С (0.5 h) with the initial g+a+Cr2N structure leads to g→aʹ transformation and the formation of submicro- and nanocrystalline structures. It causes the effective strength improvement of steel (up to 900±29 HV 0.025) and the growth of resistance to elastoplastic deformation compared to aged at the temperature of 550 °C (0.5 h) condition.

About the authors

Sergey N. Luchko

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg (Russia)

Author for correspondence.
Email: serojaluchko@gmail.com
ORCID iD: 0000-0002-2368-0913

junior researcher of Laboratory of Mechanical Properties

Russian Federation

Aleksey V. Makarov

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-2228-0643

Corresponding member of RAS, Doctor of Sciences (Engineering), Head of Department of Material Science and Laboratory of Mechanical Properties

Russian Federation

Elena G. Volkova

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0003-4958-3027

PhD (Physics and Mathematics), senior researcher of Laboratory of Mechanical Properties

Russian Federation

References

  1. Rashev T.V., Eliseev A.V., Zhekova L.T., Bogev P.V. High-nitrogen steel. Steel in Translation, 2019, vol. 49, no. 7, pp. 433–439. doi: 10.3103/S0967091219070106.
  2. Lang Y.-P., Qu H.-P., Chen H.-T., Weng Y.-Q. Research Progress and Development Tendency of Nitrogen-Alloyed Austenitic Stainless Steels. Journal of Iron and Steel Research International, 2015, vol. 22, no. 2, pp. 91–98. doi: 10.1016/S1006-706X(15)60015-2.
  3. Zhang X.Y., Zhou Q., Wang K.H., Peng Y., Ding J.L., Kong J., Williams S. Study on microstructure and tensile properties of high nitrogen Cr-Mn steel processed by CMT wire and arc additive manufacturing. Materials & Design, 2019, vol. 166, article number 107611. doi: 10.1016/j.matdes.2019.107611.
  4. Berns H., Gavriljuk V., Riedner S. High interstitial stainless austenitic steels. Berlin, Springer-Verlag Publ., 2013. 170 p. doi: 10.1007/978-3-642-33701-7.
  5. Astafurov S., Astafurova E., Reunova K., Melnikov E., Panchenko M., Moskvina V., Maier G., Rubtsov V., Kolubaev E. Electron-beam additive manufacturing of high-nitrogen steel: Microstructure and tensile properties. Materials science and engineering A-structural materials properties microstructure and processing, 2021, vol. 826, article number 141951. doi: 10.1016/j.msea.2021.141951.
  6. Hänninen H., Romu J., Ilola R., Tervo J., Laitinen A. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties. Journal of Materials Processing Technology, 2001, vol. 117, no. 3, pp. 424–430. doi: 10.1016/S0924-0136(01)00804-4.
  7. Bannykh O.A. Economical stainless nitrogen steels: promising substitutes of light alloys. Metallovedenie i termicheskaya obrabotka metallov, 2005, no. 7, pp. 9–13.
  8. Mushnikova S.Y., Kostin S.K., Sagaradze V.V., Kataeva N.V. Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment. The Physics of Metals and Metallography, 2017, vol. 118, no. 11, pp. 1155–1166. doi: 10.7868/S0015323017110092.
  9. Speidel M.O. High Nitrogen Steel 88. The Institute of Metals. London, Brookfield Publ., 1989, pp. 92–96.
  10. Speidel M.O., Speidel H.J. Commercial low-nickel and high nitrogen steels. High Nitrogen Steels. Moscow, MISIS Publ., 2009, pp. 121–123.
  11. Zhao H., Ren Y., Dong J., Yang K. The microstructure and tribological behavior of a pre-cold-deformed 0.90% nitrogen containing stainless steel. Materialwissenschaft und werkstofftechnik, 2018, vol. 49, no. 12, pp. 1439–1448. doi: 10.1002/mawe.201700142.
  12. Bannykh I.O., Sevost’yanov M.A., Prutskov M.E. Effect of heat treatment on the mechanical properties and the structure of a high-nitrogen austenitic 02Kh20AG10N4MFB steel. Russian Metallurgy, 2016, no. 7, pp. 613–618. doi: 10.1134/S0036029516070065.
  13. Unstinovshikov Y., Ruts A., Bannykh O., Blinov V. The microstructure of Fe-18%Cr alloys with high N contents. Acta Materialia, 1996, vol. 44, no. 3, pp. 1119–1125. doi: 10.1016/1359-6454(95)00232-4.
  14. Tumbusova I.A., Mayer G.G., Panchenko M.Yu., Moskvina V.A., Melnikov E.V., Astafurov S.V., Astafurova E.G. The influence of age hardening on microstructure, phase composition, and microhardness of high-nitrogen austenitic steel. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2020, no. 2, pp. 74–81. doi: 10.18323/2073-5073-2020-2-74-81.
  15. Mikhno A.S., Panchenko M.Yu., Mayer G.G., Moskvina V.A., Melnikov E.V. Astafurov S.V., Astafurova E.G. Effect of the precipitation hardening on regularities of plastic deformation and fracture mode of v-alloyed high nitrogen austenitic steel. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2020, no. 2, pp. 42–50. doi: 10.18323/2073-5073-2020-2-42-50.
  16. Makarov A.V., Luchko S.N., Shabashov V.A., Volkova E.G., Zamatovskii A.E., Litvinov A.V., Sagaradze V.V., Osintseva A.L. Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure. The Physics of Metals and Metallography, 2017, vol. 118, no. 1, pp. 52–64.
  17. Narkevich N.A., Mironov Y.P., Shulepov I.A. Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment. The Physics of Metals and Metallography, 2017, vol. 118, no. 4, pp. 399–406.
  18. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Materials science and engineering A-structural materials properties microstructure and processing, 2004, vol. 375, no. SI, pp. 38–45. doi: 10.1016/j.msea.2003.10.261.
  19. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels. The Physics of Metals and Metallography, 2019, vol. 120, no. 3, pp. 303–311. doi: 10.1134/S0015323018120124.
  20. Korshunov L.G., Shabashov V.A., Chernenko N.L., Pilyugin V.P. Influence of the stressed state of the zone of friction contact on the formation of the structure of a surface layer and tribological properties of steels and alloys. Physics of Metals and Metallography, 2008, vol. 105, no. 1, pp. 64–78. doi: 10.1134/S0031918X08010079.
  21. Shabashov V.A., Sagaradze V.V., Makarov A.V. Structure modification of high-nitrogen and high-carbon austenitic steels by megadeformation. The Physics of Metals and Metallography, 2018, vol. 119, no. 11, pp. 1087–1092. doi: 10.1134/S0015323018110189.
  22. Shabashov V.A., Makarov A.V., Kozlov K.A., Sagaradze V.V., Zamatovskii A.E., Volkova E.G., Luchko S.N. Deformation-induced dissolution and precipitation of nitrides in austenite and ferrite of a high-nitrogen stainless steel. The Physics of Metals and Metallography, 2018, vol. 119, no. 2, pp. 180–190.
  23. Makarov A.V., Luchko S.N., Volkova E.G., Osintseva A.L., Litvinov A.V. The structure, phase composition and micromechanical characteristics of high-nitrogen austenitic steel after high-temperature ageing and deformation by shear under pressure. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2017, no. 4, pp. 59–66. doi: 10.18323/2073-5073-2017-4-59-66.
  24. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: a critique. Surface and Coatings Technology, 1993, vol. 61, no. 1-3, pp. 201–208. doi: 10.1016/0257-8972(93)90226-E.
  25. Petrzhik M.I., Levashov E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallography Reports, 2007, vol. 52, no. 6, pp. 966–974. doi: 10.1134/S1063774507060065.
  26. Firstov S.A., Gorban V.F., Pechkovskiy E.P. Measurement of ultimate values of hardness, elastic strain and stress of materials by an automatic indentation method. Materialovedenie, 2008, no. 8, pp. 15–21.
  27. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus and the work of indentation. Applied Physics Letters, 1998, vol. 73, no. 5, pp. 614–616. doi: 10.1063/1.121873.
  28. Mayrhofer P.H., Mitterer C., Musil J. Structure-property relationships in single- and dual-phase nanocrystalline hard coatings. Surface and Coatings Technology, 2003, vol. 174, pp. 725–731. doi: 10.1016/S0257-8972(03)00576-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies