The study of mechanical deformation resistance of α-Ga2O3 epitaxial layers using the nanoindentation technique

Cover Page

Cite item

Full Text

Abstract

Gallium oxide (Ga2O3) is a wide-band semiconducting material with an energy gap width Eg=4.8–5.0 eV, high conductivity (λ~10.9–27.0 W/(m·K)), and radiation and chemical resistance. Its energy gap width and conductivity allow in the future using the material in the structures of power equipment and optoelectronic devices to increase their energy performance, i.e. to decrease heating and increase productive capacity. Radiation resistance, high breakdown field, and optical asymmetry of Ga2O3 make it attractive for application when designing UV-photoelectric receivers and space systems. The electrical and optical properties of Ga2O3 are amply studied, but there are no systematic data on its physical and mechanical properties (hardness, Young’s modulus, and crack resistance). The paper investigated the deformation in α-Ga2O3 epitaxial layers during nanoindentation. For indentation, the authors used NanoTest (Micro Materials Ltd.) hardness meter. The surface (0001) of α-Ga2O3 crystalline layers produced in the process of chloride gas epitaxy on sapphire (Al2O3) substrates with basic (0001) orientation was investigated. For the first time, the authors experimentally obtained the values of α-Ga2O3 hardness and Young’s modulus using the Oliver-Farr method. The dependences of the indentation load on the penetration depth demonstrated the deviation from linearity, including stress relaxation coming from the pop-in phenomenon. The average values of nanohardness H and Young’s modulus E were 17 and 281 GPa, respectively. The obtained H and E values demonstrate higher characteristics compared to the formerly studied β-Ga2O3 epitaxial layers. This discrepancy can be explained by the more close-packed arrangement of the α-Ga2O3 structure (the corundum type) than one of monoclinic β-Ga2O3. The study shows that α-Ga2O3 leaves the majority of semiconducting materials behind in its mechanical properties conceding only to gallium nitride (GaN) and sapphire (Al2O3).

About the authors

Lyubov I. Guzilova

Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russia)

Author for correspondence.
Email: luba-guzilova@yandex.ru
ORCID iD: 0000-0003-4205-3226

acting junior researcher

Russian Federation

Aleksandr S. Grashchenko

Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-4746-4238

junior researcher

Russian Federation

Vladimir I. Nikolaev

Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russia)

Email: fake@neicon.ru
ORCID iD: 0000-0002-5630-0833

PhD (Physics and Mathematics), Head of Laboratory, leading researcher

Russian Federation

References

  1. Pearton S.J., Yang J.C., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga2O3 materials, processing, and devices. Applied Physics Review, 2018, vol. 5, no. 1, article number 011301. doi: 10.1063/1.5006941.
  2. Nikolaev V.I., Stepanov S.I., Romanov A.E., Bougrov V.E. Gallium oxide. Single Crystals of Electronics Materials. Growth and Properties, 2019, pp. 487–521. doi: 10.1016/B978-0-08-102096-8.00014-8.
  3. Hasan M.N., Swinnich E., Seo J.-H. Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics. International Journal of High Speed Electronics and Systems, 2019, vol. 28, no. 01n02, article number 1940004. doi: 10.1142/9789811216480_0004.
  4. Zhang H.P., Yuan L., Tang X.Y., Hu J.C., Sun J.W., Zhang Y.M., Zhang Y.M., Jia R.X. Progress of Ultra-Wide Bandgap Ga2O3 Semiconductor Materials in Power MOSFETs. IEEE Transactions on Power Electronics, 2020, vol. 35, no. 5, pp. 5157–5179. doi: 10.1109/TPEL.2019.2946367.
  5. Guo D., Guo Q., Chen Z., Wu Z., Li P., Tang W. Review of Ga2O3-based optoelectronic devices. Materials Today Physics, 2019, vol. 11, article number 100157. doi: 10.1016/j.mtphys.2019.100157.
  6. Chen X.H., Ren F.F., Ye J.D., Gu S.L. Gallium oxide-based solar-blind ultraviolet photodetectors. Semiconductor Science and Technology, 2020, vol. 35, no. 2, article number 023001. doi: 10.1088/1361-6641/ab6102.
  7. Kaur D., Kumar M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. Advanced optical materials, 2021, vol. 9, no. 9, article number 2002160. doi: 10.1002/adom.202002160.
  8. Bauman D.A., Borodkin A.I., Petrenko A.A., Panov D.I., Kremleva A.V., Spiridonov V.A., Zakgeim D.A., Silnikov M.V., Odnoblyudov M.A., Romanov A.E., Bougrov V.E. On improving the radiation resistance of gallium oxide for space applications. Acta Astronautica, 2021, vol. 180, pp. 125–129. doi: 10.1016/j.actaastro.2020.12.010.
  9. Roy R., Hill V.G., Osborn E.F. Polymorphism of Ga2O3 and the System Ga2O3-H2O. Journal of the American Chemical Society, 1952, vol. 74, no. 3, pp. 719–722. doi: 10.1021/ja01123a039.
  10. Hazdra P., Popelka S. Radiation resistance of wide-bandgap semiconductor power transistors. Physica Status Solidi (A) Applications and Materials Science, 2017, vol. 214, no. 4, article number 1600447. doi: 10.1002/pssa.201600447.
  11. Lee S.-D., Akaiwa K., Fujita S. Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates. Physica status solidi C: current topics in solid state physics, 2013, vol. 10, no. 11, pp. 1592–1595. doi: 10.1002/pssc.201300259.
  12. Lipinska-Kalita K.E., Kalita P.E., Hemmers O.A., Hartmann T. Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression. Physical Review B, 2008, vol. 77, no. 9, article number 094123. doi: 10.1103/PhysRevB.77.094123.
  13. Furthmuller J., Bechstedt F. Quasiparticle bands and spectra of Ga2O3 polymorphs. Physical Review B, 2016, vol. 93, no. 11, article number 115204. doi: 10.1103/PhysRevB.93.115204.
  14. Wu Y.Q., Gao S., Huang H. The deformation pattern of single crystal β-Ga2O3 under nanoindentation. Materials Science in Semiconductor Processing, 2017, vol. 71, pp. 321–325. doi: 10.1016/j.mssp.2017.08.019.
  15. Wu Y.Q., Gao S., Kang R.K., Huang H. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars. Journal of Materials Science, 2019, vol. 54, no. 3, pp. 1958–1966. doi: 10.1007/s10853-018-2978-9.
  16. Nakai K., Nagai T., Noami K., Futagi T. Characterization of defects in β-Ga2O3 single crystals. Japanese journal of applied physic, 2015, vol. 54, no. 5, article number 051103. doi: 10.7567/JJAP.54.051103.
  17. Ueda O., Ikenaga N., Koshi K., Iizuka K., Kuramata A., Hanada K., Moribayashi T., Yamakoshi S., Kasu M. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process. Japanese journal of applied physic, 2016, vol. 55, no. 12, article number 1202B. doi: 10.7567/JJAP.55.1202BD.
  18. Mu W.X., Jia Z.T., Yin Y.R., Hu Q.Q., Li Y., Wu B.Y., Zhang J., Tao X.T. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. Journal of Alloys and Compounds, 2017, vol. 714, pp. 453–458. doi: 10.1016/j.jallcom.2017.04.185.
  19. Grashchenko A.S., Kukushkin S.A., Nikolaev V.I., Osipov A.V., Osipova E.V., Soshnikov I.P. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates. Physics of the Solid State, 2018, vol. 60, no. 5, pp. 852–857. doi: 10.1134/S1063783418050104.
  20. Guzilova L.I., Grashchenko A.S., Pechnikov A.I., Maslov V.N., Zavyalov D.V., Abdrakhmanov V.L., Romanov A.E., Nikolaev V.I. Study of β-Ga2O3 epitaxial layers and single crystals by nanoindentation technique. Fizika i mekhanika materialov, 2016, vol. 29, no. 2, pp. 166–171.
  21. Víllora E.G., Arjoca S., Shimamura K., Inomata D., Aoki K. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Oxide-based materials and devices V: Proceedings of SPIE, 2014, vol. 8987, article number 89871U. doi: 10.1117/12.2039305.
  22. Pechnikov A.I., Stepanov S.I., Chikiryaka A.V., Scheglov M.P., Odnobludov M.A., Nikolaev V.I. Thick α-Ga2O3 Layers on Sapphire Substrates Grown by Halide Epitaxy. Semiconductors, 2019, vol. 53, no. 6, pp. 780–783. doi: 10.1134/S1063782619060150.
  23. Fischer-Cripps A.C. Nanoindentation. New York, Springer Publ., 2011. 282 p. doi: 10.1007/978-1-4419-9872-9.
  24. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, vol. 7, no. 6, pp. 1564–1583. doi: 10.1557/JMR.1992.1564.
  25. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advanced in understanding and refinements to methodology. Journal of Material Research, 2004, vol. 19, no. 1, pp. 3–20. doi: 10.1557/jmr.2004.19.1.3.
  26. McSkinin H.J., Andreatch Jr.P., Glynn P. The Elastic Stiffness Moduli of Diamond. Journal of Applied Physics, 1972, vol. 43, no. 3, pp. 985–987. doi: 10.1063/1.1661318.
  27. Ohmura T., Wakeda M. Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique. Materials, 2021, vol. 14, no. 8, article number 1879. doi: 10.3390/ma14081879.
  28. Fang X.F., Bishara H., Ding K., Tsybenko H., Porz L., Höfling M., Bruder E., Li Y.W., Dehm G., Durst K. Nanoindentation pop-in in oxides at room temperature: Dislocation activation or crack formation? Journal of the American ceramic society, 2021, vol. 104, no. 9, pp. 4728–4741. doi: 10.1111/jace.17806.
  29. Nikolaev V.I., Chikiryaka A.V., Guzilova L.I., Pechnikov A.I. Microhardness and Crack Resistance of Gallium Oxide. Technical Physics Letters, 2019, vol. 45, no. 11, pp. 1114–1117. doi: 10.1134/S1063785019110117.
  30. Schewski R., Wagner G., Baldini M., Gogova D., Galazka Z., Schulz T., Remmele T., Markurt T., von Wenckstern H., Grundmann M., Bierwagen O., Vogt P., Albrecht M. Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001). Applied physics express, 2015, vol. 8, no. 1, article number 11101. doi: 10.7567/APEX.8.011101.
  31. He H.Y., Orlando R., Blanco M.A., Pandey R., Amzallag E., Baraille I., Rérat M. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Physical Review B, 2006, vol. 74, no. 19, article number 195123. doi: 10.1103/PhysRevB.74.195123.
  32. Ma Y., Cao L.L., Hang W., Zhang T.H., Yuan J.L. Crystallographic orientation effect on the incipient plasticity and its stochastic behavior of a sapphire single crystal by spherical nanoindentation. Ceramics International, 2020, vol. 46, no. 10, pp. 15554–15564. doi: 10.1016/j.ceramint.2020.03.102.
  33. Dub S.N., Brazhkin V.V., Novikov N.V., Tolmachova G.N., Litvin P.M., Lityagina L.M., Dyuzheva T.I. Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation. Journal of Superhard Materials, 2010, vol. 32, no. 6, pp. 406–414. doi: 10.3103/S1063457610060067.
  34. Mao W.G., Shen Y.G., Lu C. Nanoscale elastic–plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation. Journal of the European Ceramic Society, 2011, vol. 31, no. 10, pp. 1865–1871. doi: 10.1016/j.jeurceramsoc.2011.04.012.
  35. Ruppi S., Larsson A., Flink A. Nanoindentation hardness, texture and microstructure of α-Al2O3 and κ-Al2O3 coatings. Thin Solid Films, 2008, vol. 516, no. 18, pp. 5959–5966. doi: 10.1016/j.tsf.2007.10.078.
  36. Nowak R., Pessa M., Suganuma M., Leszczynski M., Grzegory I., Porowski S., Yoshida F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. Applied physics letters, 1999, vol. 75, no. 14, pp. 2070–2072. doi: 10.1063/1.124919.
  37. Cheng Y.T., Cai D.J., Wang H., Wu J.J., Liu X.S., Zhang G.Y., Yu T.J. Anisotropic Fracture Toughness of Bulk GaN. Physica status solidi B-basic solid state physics, 2018, vol. 255, no. 5, article number 1700515. doi: 10.1002/pssb.201700515.
  38. Colemana V.A., Bradby J.E., Jagadish C., Munroe P., Heo Y.W., Pearton S.J., Norton D.P., Inoue M., Yano M. Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Applied Physics Letters, 2005, vol. 86, no. 20, article number 203105. doi: 10.1063/1.1929874.
  39. Jian S.R. Mechanical responses of single-crystal ZnO. Journal of Alloys and Compounds, 2010, vol. 494, no. 1-2, pp. 214–218. doi: 10.1016/j.jallcom.2009.11.142.
  40. Ma Y., Huang X.W., Song Y.X., Hang W., Zhang T.H. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO3 Single Crystal by Nanoindentation. Materials, 2019, vol. 12, no. 10, article number 1683. doi: 10.3390/ma12101683.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies