ВЫЯВЛЕНИЕ ЗОН УСТАЛОСТНОЙ ТРЕЩИНЫ ПРИ ГИГАЦИКЛОВОЙ УСТАЛОСТИ СТАЛИ 42CrMo4 С ПРИМЕНЕНИЕМ КОЛИЧЕСТВЕННОЙ ФРАКТОГРАФИИ
https://doi.org/10.18323/2073-5073-2019-3-33-39
Аннотация
Об авторах
М. Н. СелезневРоссия
Е. Д. Мерсон
Россия
Список литературы
1. Hong Y., Sun C. The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials - An overview // Theoretical and Applied Fracture Mechanics. 2017. Vol. 92. P. 331-350.
2. Murakami Y., Nomoto T., Ueda T. Factors influencing the mechanism of superlong fatigue failure in steels // Fatigue and Fracture Engineering Materials Structures. 1999. Vol. 22. № 7. P. 581-590.
3. Zhang L., Thomas B.G. Inclusions in continuous casting of steel // XXIV National Steelmaking Symposium. Morelia, 2003. P. 138-183.
4. Zerbst U., Madia M., Klinger C., Bettge D., Murakami Y. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions // Engineering Failure Analysis. 2019. Vol. 98. P. 228-239.
5. Stanzl-Tschegg S.E. Fracture mechanisms and fracture mechanics at ultrasonic frequencies // Fatigue and Fracture Engineering Materials Structures. 1999. Vol. 22. № 7. P. 567-579.
6. Stanzl-Tschegg S. Very high cycle fatigue measuring techniques // International Journal of Fatigue. 2014. Vol. 60. P. 2-17.
7. Spies H.J., Dalke A. Case Structure and Properties of Nitrided Steels // Comprehensive Materials Processing. 2014. Vol. 12. P. 439-488.
8. Zhuang W.Z., Halford G.R. Investigation of residual stress relaxation under cyclic load // International Journal of Fatigue. 2001. Vol. 23. P. 31-37.
9. Weidner A., Lippmann T., Biermann H. Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel // Journal of Materials Research. 2017. Vol. 32. № 23. P. 4305-4316.
10. Murakami Y. Metal Fatigue Effects of Small Defects and Nonmetallic Inclusions. Amsterdam: Elsevier Ltd., 2002. 369 p.
11. Zerbst U., Madia M., Klinger C., Bettge D., Murakami Y. Defects as a root cause of fatigue failure of metallic components. I: Basic aspects // Engineering Failure Analysis. 2019. Vol. 97. P. 777-792.
12. Paris P., Erdogan F. A critical analysis of crack propagation laws // Journal of Fluids Engineering, Transactions of the ASME. 1963. Vol. 85. № 4. P. 528-533.
13. Zimmermann M. Very High Cycle Fatigue // Handbook of Mechanics of Materials. Singapore: Springer, 2018. P. 1-38.
14. Sakai T., Oguma N., Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue // Fatigue and Fracture Engineering Materials Structures. 2015. Vol. 38. № 11. P. 1305-1314.
15. Stanzl-Tschegg S., Schönbauer B. Near-threshold fatigue crack propagation and internal cracks in steel // Procedia Engineering. 2010. Vol. 2. № 1. P. 1547-1555.
16. Murakami Y., Nomoto T., Ueda T., Murakami Y. On the mechanism of fatigue failure in the superlong life regime (N>107cycles). Part I: Influence of hydrogen trapped by inclusions // Fatigue and Fracture Engineering Materials Structures. 2000. Vol. 23. № 11. P. 893-902.
17. Murakami Y., Nomoto T., Ueda T., Murakami Y. On the mechanism of fatigue failure in the superlong life regime (N>107cycles). Part II: A fractographic investigation // Fatigue and Fracture Engineering Materials Structures. 2000. Vol. 23. № 11. P. 903-910.
18. Shiozawa K., Morii Y., Nishino S. Subsurface crack initiation and propagation mechanism under the super-long fatigue regime for high speed tool steel (JIS SKH51) by Fracture Surface Topographc Analysis // JSME International Journal, Series A: Solid Mechanics and Material Engineering. 2006. Vol. 49. № 1. P. 1-9.
19. Shiozawa K., Morii Y., Nishino S., Lu L. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime // International Journal of Fatigue. 2006. Vol. 28. № 11. P. 1521-1532.
20. Merson E.D., Danilov V.A., Linderov M.L., Myagkikh P.N., Merson D.L., Vinogradov A. Assessing Fracture Surface Ductility by Confocal Laser Scanning Microscopy // Procedia Structural Integrity. 2018. Vol. 13. P. 2152-2157.
21. Merson E., Danilov V., Merson D., Vinogradov A. Confocal laser scanning microscopy: The technique for quantitative fractographic analysis // Engineering Fracture Mechanics. 2017. Vol. 183. P. 147-158.
22. Мерсон Е.Д., Данилов В.А., Мерсон Д.Л. Количественный анализ изломов при помощи конфокальной лазерной сканирующей микроскопии // Вектор науки Тольяттинского государственного университета. 2015. № 4. P. 68-75.
23. Merson E., Kudrya A.V., Trachenko V.A., Merson D., Danilov V., Vinogradov A. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy // Materials Science and Engineering A. 2016. Vol. 665. P. 35-46.
24. Dudczig S., Aneziris C.G., Emmel M., Schmidt G., Hubalkova J., Berek H. Characterization of carbon-bonded alumina filters with active or reactive coatings in a steel casting simulator // Ceramics International. 2014. Vol. 40. № PB. P. 16727-16742.
25. Krewerth D., Lippmann T., Weidner A., Biermann H. Application of full-surface view in situ thermography measurements during ultrasonic fatigue of cast steel G42CrMo4 // International Journal of Fatigue. 2015. Vol. 80. P. 459-467.
26. Li W., Deng H., Sun Z., Zhang Z., Lu L., Sakai T. Subsurface inclusion-induced crack nucleation and growth behaviors of high strength steels under very high cycle fatigue: Characterization and microstructure-based modeling // Materials Science and Engineering A. 2015. Vol. 641. P. 10-20.
Рецензия
Для цитирования:
Селезнев М.Н., Мерсон Е.Д. ВЫЯВЛЕНИЕ ЗОН УСТАЛОСТНОЙ ТРЕЩИНЫ ПРИ ГИГАЦИКЛОВОЙ УСТАЛОСТИ СТАЛИ 42CrMo4 С ПРИМЕНЕНИЕМ КОЛИЧЕСТВЕННОЙ ФРАКТОГРАФИИ. Вектор науки Тольяттинского государственного университета. 2019;(3):33-39. https://doi.org/10.18323/2073-5073-2019-3-33-39
For citation:
Seleznev M.N., Merson E.D. IDENTIFICATION OF FATIGUE CRACK ZONES IN VERY HIGH CYCLE FATIGUED 42CrMo4 STEEL WITH THE USE OF QUANTITATIVE FRACTOGRAPHY. Science Vector of Togliatti State University. 2019;(3):33-39. (In Russ.) https://doi.org/10.18323/2073-5073-2019-3-33-39