The comparative analysis of thermal effects in elastomers modified with MCNT at constant DC voltage


Cite item

Full Text

Abstract

The author carried out the comparative analysis of elastomers – polyurethane (NPC) and silicone compound (NCOC) modified with carbon nanotubes (MCNT) with a mass content of 1 to 9 %. MCNTs were synthetically produced by the CVD technology using Co-Mo/Al2O3-MgO (MCNT1) and Fe-Co/2,1Al2O3 (MCNT2) catalysts. The analysis of experimental study results showed that the lowest specific bulk electrical conductivity (5×10-10 Cm×cm-1) was typical for polyurethane elastomer (1 mass. % MCNT synthetically produced using Fe-Co/2,1Al2O3 catalyst). For the silicone elastomer modified with 9 mass. % MCNT1, the specific bulk electrical conductivity was 4×10-1 Cm×cm-1. The author identified the parameters of percolation of electrical conductivity model for NPC, NCOC with MCNT1 and MCNT2, taking into account the MCNT packing factor and electrical conductivity critical index. The maximum temperature field uniformity is typical for silicone elastomer with 7 mass. % MCNT2. Nonuniform temperature field in modified polyurethane-based elastomers can be caused by the local MCNT entanglement manifested in the creation of agglomerates or more dense electrically-conductive circuit packing, which, in its turn, results in the decrease in heat power. The heating temperature of nanomodified composites produced from NCOC 1 and NCOC 2 can vary from 32.9 to 102 °С. The author studied the modes of nanomodified elastomers heat generation in the range of 6 to 30 V, compared heat generation in the elastomer-based and ceramics-based samples. The study allowed identifying the best combination of the polymeric matrix and MCNT type. For the electric heater, it is the most efficient to apply silicone compound at the 7 % MCNT concentration and, depending on the feeding voltage level of 12 or 24 V, to use MCNT1 or MCNT2.

About the authors

Aleksandr V. Shchegolkov

Tambov State Technical University, Tambov (Russia)

Author for correspondence.
Email: Energynano@yandex.ru
ORCID iD: 0000-0002-4317-0689

PhD (Engineering), assistant professor of Chair “Technology and Methods of Nanoproducts Manufacturing”

Russian Federation

References

  1. Nizamuddin S., Maryam S., Baloch H.A., Siddiqui M.T.H., Takkalkar P., Mubarak N.M., Jatoi A.S., Abbasi S.A., Griffin G.J., Qureshi K., Kao N. Electrical Properties of Sustainable Nano-Composites Containing Nano-Fillers: Dielectric Properties and Electrical Conductivity. Sustainable Polymer Composites and Nanocomposites, 2019, pp. 899–914. DOI: https://doi.org/10.1007/978-3-030-05399-4_30.
  2. Mächler D., Schmidt R., Töpfer J. Synthesis, doping and electrical bulk response of (Bi 1/2 Na 1/2 ) x Ba 1-x TiO 3 + CaO – based ceramics with positive temperature coefficient of resistivity (PTCR). Journal of Alloys and Compounds, 2018, vol. 762, pp. 209–215. DOI: https://doi.org/10.1016/j.jallcom.2018.05.049.
  3. Paunović V., Mitić V., Pavlović V., Miljković M., Živković L. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics. Processing and Application of Ceramics, 2010, vol. 4, no. 4, pp. 253–258. DOI: https://doi.org/10.2298/PAC1004253P.
  4. Petrović M.M.V., Bobić J.D., Grigalaitis R., Stojanović B.D., Banys J. La-doped and La/Mn-co-doped barium titanate ceramics. Acta Physica Polonica A, 2013, vol. 124, no. 1, pp. 155–160. DOI: https://doi.org/10.12693/APhysPolA.124.155.
  5. Rowlands W., Vaidhyanathan B. Additive manufacturing of barium titanate based ceramic heaters with positive temperature coefficient of resistance (PTCR). Journal of the European Ceramic Society, 2019, vol. 39, no. 12, pp. 3475–3483. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.03.024.
  6. Ali, I., AlGarni T.S., Shchegolkov A., Shchegolkov A., Jang S.-H., Galunin E., Komarov F., Borovskikh P., Imanova G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers. Polymer Bulletin, 2021, article in press. DOI: https://doi.org/10.1007/s00289-020-03483-y.
  7. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon, 2016, vol. 110, pp. 343–349. DOI: https://doi.org/10.1016/j.carbon.2016.09.016.
  8. Ha J.-H., Chu K., Park S.-H. Electrical Properties of the Carbon-Nanotube Composites Film Under Extreme Temperature Condition. Journal of Nanoscience and Nanotechnology, 2019, vol. 19, no. 3, pp. 1682–1685. DOI: https://doi.org/10.1166/jnn.2019.16250.
  9. Cheng Y., Zhang H., Wang R., Wang X., Zhai H., Wang T., Jin Q., Sun J. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS Applied Materials and Interfaces, 2016, vol. 8, no. 48, pp. 32925–32933. DOI: https://doi.org/10.1021/acsami.6b09293.
  10. Vertuccio L., Foglia F., Pantani R., Romero-Sánchez M.D., Calderón B., Guadagno L. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications. Composites Part B: Engineering, 2021, vol. 207, article number 108583. DOI: https://doi.org/10.1016/j.compositesb.2020.108583.
  11. Vertuccio L., De Santis F., Pantani R., Lafdi K., Guadagno L. Effective de-icing skin using graphene-based flexible heater. Composites Part B: Engineering, 2019, vol. 162, pp. 600–610. DOI: https://doi.org/10.1016/j.compositesb.2019.01.045.
  12. Yao X., Hawkins S.C., Falzon B.G. An advanced antiicing/de-icing system utilizing highly aligned carbon nanotube webs. Carbon, 2018, vol. 136, pp. 130–138. DOI: https://doi.org/10.1016/j.carbon.2018.04.039.
  13. Redondo O., Prolongo S.G., Campo M., Sbarufatti C., Giglio M. Anti-icing and de-icing coatings based Joule’s heating of graphene nanoplatelets. Composites Science and Technology, 2018, vol. 164, pp. 65–73.
  14. Jain S.K., Tadesse Y. Fabrication of polylactide/carbon nanopowder filament using melt extrusion and filament characterization for 3D printing. International Journal of Nanoscience, 2018, vol. 18, no. 5, article number 1850026.
  15. Baloch K.H., Voskanian N., Bronsgeest M., Cumings J. Remote Joule heating by a carbon nanotube. Nature Nanotechnology, 2012, vol. 7, no. 5, pp. 316–319. DOI: https://doi.org/10.1038/nnano.2012.39.
  16. Celzard A., McRae E., Deleuze C., Dufort M., Furdin G., Mareche J.F. Critical concentration in percolating systems containing a high-aspect-ratio filler. Physical Review B – Condensed matter and materials physics, 1996, vol. 53, no. 10, pp. 6209–6214. DOI: https://doi.org/10.1103/PhysRevB.53.6209.
  17. Bai J.B., Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – experimental investigation. Composites Part A – Applied science and manufacturing, 2003, vol. 34, no. 8, pp. 689–694. DOI: https://doi.org/10.1016/S1359-835X(03)00140-4.
  18. Martin C.A., Sandler J.K.W., Shaffer M.S.P., Schwarz M.-K., Bauhofer W., Schulte K., Windle A.H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Composites Science and Technology, 2004, vol. 64, no. 15, pp. 2309–2316. DOI: https://doi.org/10.1016/j.compscitech.2004.01.025.
  19. Bao W.S., Meguid S.A., Zhu Z.H., Pan Y., Weng G.J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mechanics of Materials, 2012, vol. 46, pp. 129–138. DOI: https://doi.org/10.1016/j.mechmat.2011.12.006.
  20. Shchegolkov A.V., Shchegolkov A.V., Komarov F.F., Parfimovich I.D. The use of elastomers modified with carbon nanotubes when creating self-regulating electric heaters and materials for protection against electromagnetic radiation. Rossiyskiy khimicheskiy zhurnal, 2020, vol. 64, no. 4, pp. 39–45.
  21. Aguilar J.O., Bautista-Quijano J.R., Avilés F. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polymer Letters, 2010, vol. 4, no. 5, pp. 292–299. DOI: https://doi.org/10.3144/expresspolymlett.2010.37.
  22. Shchegolkov A.V., Komarov F.F., Parfimovich I.D., Milchanin O.V., Shchegolkov A.V., Khrobak A.V., Semenkova A.V. The influence of carbon nanotubes on the electric conductivity of thermosetting plastics and elastomers. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2020, no. 3, pp. 65–72. DOI: https://doi.org/10.18323/2073-5073-2020-3-65-72.
  23. Mamunya Y.P., Davydenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 2002, vol. 38, no. 9, pp. 1887–1897. DOI: https://doi.org/10.1016/s0014-3057(02)00064-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies