Исследование сопротивления механической деформации эпитаксиальных слоев α-Ga₂O₃ методом наноиндентирования

© 2021

Гузилова Любовь Игоревна*^{1,3}, исполняющий обязанности младшего научного сотрудника

Гращенко Александр Сергеевич^{2,4}, младший научный сотрудник

Николаев Владимир Иванович^{1,5}, кандидат физико-математических наук,

заведующий лабораторией, ведущий научный сотрудник

¹Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург (Россия) ²Институт проблем машиноведения Российской академии наук, Санкт-Петербург (Россия)

*E-mail: luba-guzilova@yandex.ru

³ORCID: <u>https://orcid.org/0000-0003-4205-3226</u> ⁴ORCID: <u>https://orcid.org/0000-0002-4746-4238</u> ⁵ORCID: <u>https://orcid.org/0000-0002-5630-0833</u>

Аннотация: Оксид галлия (Ga₂O₃) – широкозонный полупроводниковый материал, обладающий шириной запрещенной зоны E_g=4,8−5,0 эВ, высокой проводимостью (λ~10,9−27,0 Вт/(м·К)), радиационной и химической стойкостью. Ширина его запрещенной зоны и проводимость позволяют в перспективе использовать его в конструкциях силовых приборов и оптоэлектронных устройств, чтобы увеличить их энергоэффективность, т. е. уменьшить нагрев и увеличить производительность. Радиационная стойкость, высокое поле пробоя, асимметрия оптических свойств Ga₂O₃ делают перспективным его использование при проектировании УФ-фотоприемников и космической техники. Электрические и оптические свойства Ga₂O₃ изучены достаточно полно, систематические же данные о его физико-механических свойствах (твердость, модуль Юнга, трещиностойкость) отсутствуют. В работе исследована деформация в эпитаксиальных слоях α-Ga₂O₃ при наноиндентировании. Для индентирования использовался твердомер NanoTest (Micro Materials Ltd.). Исследовалась поверхность (0001) кристаллических слоев α-Ga₂O₃, полученных в процессе хлоридной газовой эпитаксии на сапфировые (Al₂O₃) подложки базисной (0001) ориентации. Впервые экспериментально получены значения твердости и модуля Юнга α-Ga₂O₃ с использованием метода Оливера – Фарра. В зависимостях нагрузки на индентор от глубины его проникновения наблюдалось отклонение от линейного хода, в том числе релаксация напряжений, связанная с "pop-in" эффектом. Средние значения нанотвердости *H* и модуля Юнга *E* α-Ga₂O₃ составили 17 и 281 ГПа соответственно. Полученные значения *H* и Е демонстрируют более высокие характеристики по сравнению с изученными ранее эпитаксиальными слоями β -Ga₂O₃. Это различие можно объяснить более плотной упаковкой структуры α -Ga₂O₃ (тип корунд), чем у моноклинного β -Ga₂O₃. Обнаружено, что α -Ga₂O₃ по своим механическим свойствам превосходит большинство полупроводниковых материалов, уступая лишь нитриду галлия (GaN) и сапфиру (Al₂O₃).

Ключевые слова: оксид галлия; эпитаксиальные слои; эпитаксиальные слои α-Ga₂O₃; α-Ga₂O₃; наноиндентирование; механические свойства; "pop-in" эффект.

Благодарности: Л.И. Гузилова, В.И. Николаев выполняли свою часть работы в рамках темы «Фундаментальные проблемы физики и химии наноструктурированных и нанокомпозитных материалов и приборных структур, физические свойства монокристаллических и неупорядоченных материалов» госзадания № 0040-2014-0007. А.С. Гращенко выполнял свою часть работы в рамках госзадания ФГУП ИПМаш РАН № АААА-А18-118012790011-3.

Статья подготовлена по материалам докладов участников X Международной школы «Физическое материаловедение» (ШФМ-2021), Тольятти, 13–17 сентября 2021 года.

Для цитирования: Гузилова Л.И., Гращенко А.С., Николаев В.И. Исследование сопротивления механической деформации эпитаксиальных слоев α-Ga₂O₃ методом наноиндентирования // Frontier Materials & Technologies. 2021. № 4. С. 7–16. DOI: 10.18323/2782-4039-2021-4-7-16.

введение

Оксид галлия (Ga₂O₃) – широкозонный полупроводниковый материал, обладающий высокими теплопроводностью, химической и радиационной стойкостью [1; 2]. Благодаря этим свойствам в перспективе он может использоваться в конструкциях силовых приборов [3; 4] и оптоэлектронных устройств [5], УФ-фотоприемников [6; 7] и космической техники [8]. Существующие устройства высокой мощности имеют ограничения, связанные с их работой при высоких температуре и напряжении. Относительно небольшой размер подложки и отсутствие сбалансированных легирующих добавок также остаются слабыми местами существующих устройств. Решением данной технической проблемы может служить использование в конструкции подобных устройств Ga₂O₃ [3; 4]. Ширина его запрещенной зоны (E_g =4,8–5 эВ [1; 2]) и высокая проводимость ($\lambda_{[100]}$ =10,9 Вт/(м·К), $\lambda_{[201]}$ =13,3 Вт/(м·К), $\lambda_{[001]}$ =14,7 Вт/(м·К), $\lambda_{[110]}$ =27,0 Вт/(м·К) [1; 2]) позволят снизить нагрев и увеличить производительность не только силовых приборов, но и оптоэлектронных устройств [5]. Нечувствительные к солнечной радиации УФ-фотоприемники на основе Ga₂O₃ демонстрируют достаточную скорость отклика при высокой работоспособности в условиях высоких температур и космического и УФ-излучений. Это достигается благодаря

высоким значениям радиационной стойкости и поля пробоя Ga_2O_3 . Кроме того, асимметрия оптических свойств Ga_2O_3 , его механические свойства и легкая интеграция с другими оксидными полупроводниками позволяют проектировать уникальные передовые приборы и устройства, такие как лавинные фотоприемники, фототранзисторы, узкополосные фотоприемники, матрицы фотоприемников, детекторы рентгеновского излучения и интегрированные генераторы наноэлектромеханических систем для измерения и визуализации УФизлучения в реальном времени [6–8].

Оксид галлия обладает полиморфизмом: различают термически стабильный β -полиморф, который по многим параметрам уступает α -Ga₂O₃, имеющему наиболее широкую запрещенную зону и становящемуся стабильным при высоком давлении [9]. Благодаря высокой радиационной стойкости α -Ga₂O₃ [8; 10] перед ним открывается перспектива его использования в приборах, эксплуатирующихся в различных химически и радиационно-агрессивных средах, например в условиях космического γ -излучения.

Метастабильный при атмосферном давлении α -Ga₂O₃ при нагреве превращается в термостабильный β -Ga₂O₃ при температурах выше 600 °C [11]. Обратное превращение (β -Ga₂O₃ $\rightarrow \alpha$ -Ga₂O₃) возможно при давлении 6,5– 7,0 ГПа в атмосфере азота [12]. α -Ga₂O₃ обладает ромбоэндрической решеткой типа корунд, параметры решетки, полученные расчетом из первых принципов, составляют: a=53,3 нм; α =55,90°, $a_{reкc}$ =49,9 нм; $c_{reкc}$ =134,5 нм [13].

Электронные, оптические и транспортные свойства Ga_2O_3 изучены достаточно полно [1; 2], чего нельзя пока сказать об их механических свойствах. Вместе с тем эти свойства крайне важны, поскольку в полупроводниковой технологии существуют операции и механического характера, такие как резка, шлифовка и полировка пластин. Механические свойства также интересны для развития технологии, так как их необходимо учитывать при росте кристаллов и тонких слоев, использующихся в конструкциях полупроводниковых приборов. Данные о прочности требуются и для определения эксплуатационных параметров приборов.

Термомеханические напряжения, возникающие во время роста кристаллов, могут оказывать огромное влияние на их структурное качество путем увеличения количества возникающих дефектов различных типов: дислокаций, двойниковых границ и микротрещин [14-17]. Остаточные напряжения после завершения формирования кристаллов также играют значительную роль, например, они приводят к деградации гетероструктур электронных устройств на основе Ga₂O₃, особенно при экстремальных условиях их эксплуатации (при высокой температуре, высоком давлении, в полях высоких энергий). В [14; 15] при помощи наноиндентирования установлено, что доминирующими дефектами, возникающими в объеме монокристаллической пластины β-Ga₂O₃ при механической деформации, являются краевые дислокации с вектором Бюргерса b || [010], дефекты упаковки, параллельные плоскости (100), и двойниковые границы, параллельные (201).

Известно, что химические связи между атомами в приповерхностных слоях слабее, что способствует образованию бо́льшего количества дефектов. Вместе с тем исследование приповерхностного слоя позволяет дать адекватные оценки поведения материала в целом. В частности, с помощью микро- и наноиндентирования поверхности образца получают значения твердости (Н) и модуля Юнга (Е), являющиеся одними из основных механических показателей, присущих материалу. Результаты микро- и наноиндентирования поверхностей (100), (010) и $(\overline{2}01)$ эпитаксиальных слоев и объемных кристаллов β-Ga₂O₃ показывают ярко выраженную анизотропию его механических свойств. Так, при нормальных условиях для различных направлений твердость H_[010]=6 ГПа [18], H_[100]=8,9-9,0 ГПа [19; 20], *H*_[201]=12,5 ГПа [20; 21] и модуль упругости *E*_[100]=234ГПа, *E*_[201]=225 ГПа [20; 21]. Экспериментальные работы, посвященные изучению других полиморфов Ga₂O₃, отсутствуют, хотя метастабильная фаза α-Ga₂O₃, благодаря своим, как предполагается, относительно высоким механическим характеристикам, перспективна для применения в качестве защитных покрытий.

Цель работы – получение систематических данных о механических характеристиках (твердости H и модуле Юнга E) эпитаксиальных слоев метастабильного α -Ga₂O₃ и их деформации в процессе наноиндентирования.

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

В работе исследовались эпитаксиальные слои α-Ga₂O₃. полученные в процессе хлоридной газовой эпитаксии (Halide Vapour Phase Epitaxy, или HVPE) в реакторе, разработанном ООО «Совершенные кристаллы» [22]. Слои осаждались на сапфировые (Al₂O₃) подложки базисной ориентации (0001). Эпитаксия осуществлялась при температуре около 500 °C со скоростью осаждения 8-12 мкм/ч. Участвующий в газотранспортной реакции хлорид галлия синтезировался непосредственно в зоне источника реактора при пропускании газообразного хлористого водорода (HCl 99,999 %) над металлическим галлием (Ga 99,9999 %). Для реакции образования Ga₂O₃ применялся кислород марки ВЧ (99,998 %). Выход реакции синтеза GaCl составлял более 80 %. Рост слоев оксида галлия проводился в условиях избыточного потока кислорода. Отношение прекурсоров элементов групп VI/III было в диапазоне от 2 до 20. Изменение соотношения VI/III достигалось путем изменения потока HCl через источник галлия от 0,15 до 1,5 мл/мин при неизменном потоке кислорода 3 мл/мин. В качестве газаносителя использовался аргон марки ВЧ (99,998 %) Аркал. Общий газовый поток через реактор составлял 15 мл/мин. После окончания эпитаксии гетероструктура α-Ga₂O₃/Al₂O₃ охлаждалась в потоке аргона до комнатной температуры.

Толщина слоев, определенная при помощи растрового электронного микроскопа Phenom Pro X по сколам подложки с оксидным слоем, составила 11 мкм. Спектры оптического пропускания исследовались с помощью дифференциального спектрофотометра SPECORD UV-VIS, в канал сравнения помещалась сапфировая подложка без оксидного слоя. Структурные параметры слоев оксидов галлия исследовались методами рентгеновской дифракции на базе трехкристального рентгеновского дифрактометра (ТРД) высокого разрешения с использованием кристаллов германия в качестве анализатора и монохроматора на рефлексах (004) для CuKal. Данные рентгеновской дифракции показали, что эпитаксиальные слои α -Ga₂O₃ являются структурно однородными и имеют ориентацию (0001), как и подложка Al₂O₃ [22].

Для исследований использовался твердомер NanoTest (Micro Materials Ltd.). Для достоверности результатов в методике индентирования покрытий требуется выполнение следующего условия: глубина, на которую происходит вдавливание индентора в поверхность, не должна превышать 10 % от толщины слоя, что позволяет избежать влияния подложки на получаемые результаты [23].

Процесс наноиндентирования производился с использованием трехгранной алмазной пирамидки Берковича. В процессе наноиндентирования к исследуемой поверхности посредством алмазной пирамидки прилагалась сила (F), при этом регистрировалась глубина внедрения пирамидки в приповерхностный слой (h). После снятия нагрузки регистрировались восстановление поверхности и остаточная деформация. По полученным данным строились кривые нагружения F(h). При увеличении нагрузки может происходить как упругая, так и пластическая деформация. Разгрузочная ветвь кривых F(h) позволила рассчитать модуль Юнга (E) образца по методу Оливера – Фарра [24; 25]. Расчет твердости (H) также производится по методу Оливера – Фарра [24; 25]по следующей формуле:

$$H = \frac{P_{\max}}{A_c} = \frac{P_{\max}}{24,5h_c^2},$$
 (1)

где *P_{max}* – максимальная нагрузка, приложенная на индентор;

 A_{c} – контактная площадь под индентором;

*h*_c – контактная глубина.

Для вычисления модуля упругости *E* слоя необходимо рассчитать приведенный (эффективный) модуль Юнга *E_r* в контакте индентор – поверхность по формуле

$$E_r = \frac{S}{2\beta} \frac{\sqrt{\pi}}{\sqrt{A_c}},\tag{2}$$

где *S* – жесткость контакта $S = \frac{dP}{dh}$;

β – постоянная, равная 1,034 для индентора Берковича [23].

Модуль упругости слоя *E* рассчитывается из следующего соотношения:

$$\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i},$$
(3)

где Ei и v_i – модуль упругости и модуль Пуассона алмазного индентора Берковича соответственно. $E_i=1,05\cdot 10^3$ ГПа; $v_i=0,1$ [26].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

На рис. 1 изображены кривые зависимости F(h), полученные при различных режимах нагружения (нагрузка и последующая разгрузка), с максимальной нагрузкой ($F_{\rm max}$) в диапазоне 50–100 мН. В таблице 1 представлены значения твердости H и модуля Юнга E, вычисленные с использованием методики Оливера – Фарра [24; 25], в зависимости от значения максимальной нагрузки на индентор.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Во всех случаях на этапе нагружения на кривых F(h)(рис. 1) наблюдается отклонение от линейного хода, называемое "pop-in" эффектом [27; 28]. Данное явление в хрупких материалах связывают с процессом релаксации напряжений на отдельных этапах нагружения и зарождения и развития трещин в результате скопления дислокаций [28]. В нашем случае первое такое отклонение наблюдается уже при нагрузке около 40-45 мН, второе - при 95-110 мН. Кроме того, после снятия нагрузки по всей поверхности образца было обнаружено наличие сетки трещин (рис. 2), распространяющихся из углов отпечатка и из середины граней треугольных отпечатков, оставленных индентором Берковича. Как видно, распространение трещин происходит по кристаллографическим направлениям в гексагональной решетке α-Ga₂O₃. Отметим, что при микроиндентировании поверхности α-Ga₂O₃ такой эффект нами не был обнаружен [29]. На наш взгляд, это может быть обусловлено рассогласованием решеток слоя и подложки (из-за различных параметров решеток) и связанных с этим сжимающих напряжений в слое α-Ga₂O₃ [30]. На полученный результат оказывает влияние напряженное состояние, возникшее как после эпитаксии, так и в результате деформаций при наноиндентировании. Этот эффект требует дальнейшего изучения.

Полученные значения твердости H и модуля Юнга E приведены в таблице 1. Оказалось, что у α -Ga₂O₃ значения H=17 ГПа, E=281 ГПа выше, чем у β -Ga₂O₃, где $H_{[010]}$ =6 ГПа [14], $H_{[100]}$ =8,9–9,0 ГПа [15; 16], $H_{[\overline{2}01]}$ =12,5 ГПа, E=234 ГПа [20; 21]. Отмечено, что зарождение трещин в эпитаксиальном слое α -Ga₂O₃, сброс напряжений на кривой нагружения происходят при более высоких нагрузках, чем в монокристаллической пластине и эпитаксиальном слое β -Ga₂O₃ [14; 20]. Большую прочность и твердость α -Ga₂O₃ можно объяснить тем, что структура корунда более плотноупакованная, чем у моноклинного β -Ga₂O₃, что подтверждается измерением плотности этих полиморфов [18; 31].

В таблице 2 для сравнения полученных нами результатов представлены твердости и модуль Юнга для ряда полупроводниковых материалов, исследованных методом наноиндентирования. Из таблицы 2 видно, что α - и β -Ga₂O₃ по своим механическим свойствам уступают сапфиру (Al₂O₃). Значения твердости и модуля Юнга α -Ga₂O₃ находятся примерно в одном диапазоне с GaN и значительно превышают значения твердости и модуля таких полупроводниковых материалов, как LiTaO₃ и ZnO. Это позволяет предположить, что для постростовой обработки поверхности Ga₂O₃ в качестве

Таблица 1. Твердость (H) и модуль Юнга (E) эпитаксиальных слоев α-Ga₂O₃/Al₂O₃, полученные по данным наноиндентирования Table 1. Hardness (H) and Young's modulus (E) of α-Ga₂O₃/Al₂O₃ epitaxial layers produced according to nanoindentation data

Характеристика	<i>F</i> , мН				
	50,0	100,0	150,0	200,0	
<i>Н</i> , ГПа	18,7±1,7	17,2±0,4	17,9±0,7	16,7±0,6	
<i>Е</i> , ГПа	283,4±14,4	279,5±3,9	278,1±4,6	283,2±14,2	

Рис. 2. РЭМ-изображение отпечатка, оставленного индентором после снятия нагрузки F_{max}=100 мH, на поверхности (0001) эпитаксиального слоя α-Ga₂O₃/Al₂O₃ **Fig. 2.** SEM-images of a residual impression on the surface (0001) of α-Ga₂O₃/Al₂O₃ epitaxial layer after removing the load F_{max}=100 mN

Материал	Ориентация	Н, ГПа	Е, ГПа	Примечание	
Слои α-Ga ₂ O ₃ /c-Al ₂ O ₃	(0001)	17,0	281,0	Эта работа	
	(100)	8,9	234	[21]	
Монокристаллы β-Ga ₂ O ₃	(201)	12,5	230	[18]	
Слои β-Ga ₂ O ₃ /c-Al ₂ O ₃	(201)	12,5	225	[21]	
	(1100)11	25,7	408,7	[32]	
Монокристаллы α -Al ₂ O ₃	(1120)	29,0	482,0	[32]	
	(0001)	27,5	420,6	[34]	
Слои к-Al ₂ O ₃		24,7	344,3		
	(1012)	27,8	424,6	[35]	
Слои α -Al ₂ O ₃	(1014)	28,8	441,2	[33]	
	(0001)	28,9	444,4		
Монокристалл GaN	(0001)	20,0	295,0	[36]	
HVPE-слои GaN/Al ₂ O ₃		20,2	328,5	[37]	
	(1120)	2,0	163,0	[38]	
Монокристалл ZnO	(0001)	4,8	143,0	[20]	
	(1102)	5,4	112,0	[39]	
	(1102)	12,5	245		
Монокристалл LiTaO ₃	(1012)	11,6	240	[40]	
	(0112)	11,0	235		

Таблица 2. Твердость (H) и модуль Юнга (E) полупроводниковых материалов Table 2. Hardness (H) and Young's modulus (E) of semiconducting materials абразивного материала могут быть использованы карбид кремния или электрокорунд, твердость которых превышает твердость оксида галлия.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

1. Определена твердость H и модуль упругости Eэпитаксиальных слоев (0001) α -Ga₂O₃, выращенных на сапфировых подложках базисной ориентации (0001), среднее значение которых составило $H=17\pm2$ ГПа и $E=281\pm21$ ГПа в диапазоне нагрузок 50–100 мН. Метастабильный α -Ga₂O₃ отличается относительно высокими значениями твердости и модуля Юнга, уступая лишь сапфиру (Al₂O₃) и незначительно нитриду галлия (GaN).

2. При наноиндентировании α -Ga₂O₃ наблюдался "рорin" эффект, который связан с развитием трещин, что характерно для большинства хрупких материалов. После снятия нагрузки по всей поверхности α -Ga₂O₃ действительно было обнаружено наличие сетки трещин по всему образцу. Развитие трещин обусловлено высокими напряжениями в исходном гетероэпитаксиальном слое, наноиндентирование лишь инициирует их релаксацию.

СПИСОК ЛИТЕРАТУРЫ

- Pearton S.J., Yang J.C., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga₂O₃ materials, processing, and devices // Applied Physics Review. 2018. Vol. 5. № 1. Article number 011301. DOI: <u>10.1063/</u> <u>1.5006941</u>.
- Nikolaev V.I., Stepanov S.I., Romanov A.E., Bougrov V.E. Gallium oxide // Single Crystals of Electronics Materials. Growth and Properties. 2019. P. 487–521. DOI: <u>10.1016/B978-0-08-102096-8.00014-8</u>.
- Hasan M.N., Swinnich E., Seo J.-H. Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics // International Journal of High Speed Electronics and Systems. 2019. Vol. 28. № 01n02. Article number 1940004. DOI: <u>10.1142/</u> <u>9789811216480 0004</u>.
- Zhang H.P., Yuan L., Tang X.Y., Hu J.C., Sun J.W., Zhang Y.M., Zhang Y.M., Jia R.X. Progress of Ultra-Wide Bandgap Ga₂O₃ Semiconductor Materials in Power MOSFETs // IEEE Transactions on Power Electronics. 2020. Vol. 35. № 5. P. 5157–5179. DOI: <u>10.1109/</u> <u>TPEL.2019.2946367</u>.
- Guo D., Guo Q., Chen Z., Wu Z., Li P., Tang W. Review of Ga₂O₃-based optoelectronic devices // Materials Today Physics. 2019. Vol. 11. Article number 100157. DOI: <u>10.1016/j.mtphys.2019.100157</u>.
- Chen X.H., Ren F.F., Ye J.D., Gu S.L. Gallium oxidebased solar-blind ultraviolet photodetectors // Semiconductor Science and Technology. 2020. Vol. 35. № 2. Article number 023001. DOI: <u>10.1088/1361-6641/</u> <u>ab6102</u>.
- Kaur D., Kumar M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects // Advanced optical materials. 2021. Vol. 9. № 9. Article number 2002160. DOI: <u>10.1002/adom.202002160</u>.
- Bauman D.A., Borodkin A.I., Petrenko A.A., Panov D.I., Kremleva A.V., Spiridonov V.A., Zakgeim D.A.,

Silnikov M.V., Odnoblyudov M.A., Romanov A.E., Bougrov V.E. On improving the radiation resistance of gallium oxide for space applications // Acta Astronautica. 2021. Vol. 180. P. 125–129. DOI: <u>10.1016/</u> j.actaastro.2020.12.010.

- Roy R., Hill V.G., Osborn E.F. Polymorphism of Ga₂O₃ and the System Ga₂O₃-H₂O // Journal of the American Chemical Society. 1952. Vol. 74. № 3. P. 719–722. DOI: <u>10.1021/ja01123a039</u>.
- Hazdra P., Popelka S. Radiation resistance of widebandgap semiconductor power transistors // Physica Status Solidi (A) Applications and Materials Science. 2017. Vol. 214. № 4. Article number 1600447. DOI: <u>10.1002/</u> <u>pssa.201600447</u>.
- Lee S.-D., Akaiwa K., Fujita S. Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates // Physica status solidi C: current topics in solid state physics. 2013. Vol. 10. № 11. P. 1592–1595. DOI: <u>10.1002/pssc.201300259</u>.
- Lipinska-Kalita K.E., Kalita P.E., Hemmers O.A., Hartmann T. Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression // Physical Review B. 2008. Vol. 77. № 9. Article number 094123. DOI: <u>10.1103/PhysRevB.</u> <u>77.094123</u>.
- Furthmuller J., Bechstedt F. Quasiparticle bands and spectra of Ga₂O₃ polymorphs // Physical Review B. 2016. Vol. 93. № 11. Article number 115204. DOI: <u>10.1103/</u> <u>PhysRevB.93.115204</u>.
- Wu Y.Q., Gao S., Huang H. The deformation pattern of single crystal β-Ga₂O₃ under nanoindentation // Materials Science in Semiconductor Processing. 2017. Vol. 71. P. 321–325. DOI: <u>10.1016/j.mssp.2017.08.019</u>.
- 15. Wu Y.Q., Gao S., Kang R.K., Huang H. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micropillars // Journal of Materials Science. 2019. Vol. 54. № 3. P. 1958–1966. DOI: <u>10.1007/s10853-018-297</u>8-9.
- 16. Nakai K., Nagai T., Noami K., Futagi T. Characterization of defects in β -Ga₂O₃ single crystals // Japanese journal of applied physic. 2015. Vol. 54. No 5. Article number 051103. DOI: <u>10.7567/JJAP.54.051103</u>.
- 17. Ueda O., Ikenaga N., Koshi K., Iizuka K., Kuramata A., Hanada K., Moribayashi T., Yamakoshi S., Kasu M. Structural evaluation of defects in β-Ga₂O₃ single crystals grown by edge-defined film-fed growth process // Japanese journal of applied physic. 2016. Vol. 55. № 12. Article number 1202B. DOI: <u>10.7567/JJAP.55.</u> <u>1202BD</u>.
- 18. Mu W.X., Jia Z.T., Yin Y.R., Hu Q.Q., Li Y., Wu B.Y., Zhang J., Tao X.T. High quality crystal growth and anisotropic physical characterization of β -Ga₂O₃ single crystals grown by EFG method // Journal of Alloys and Compounds. 2017. Vol. 714. P. 453–458. DOI: <u>10.1016/j.</u> jallcom.2017.04.185.
- 19. Grashchenko A.S., Kukushkin S.A., Nikolaev V.I., Osipov A.V., Osipova E.V., Soshnikov I.P. Study of the Anisotropic Elastoplastic Properties of β-Ga₂O₃ Films Synthesized on SiC/Si Substrates // Physics of the Solid State. 2018. Vol. 60. № 5. P. 852–857. DOI: <u>10.1134/S1063783418050104</u>.
- 20. Гузилова Л.И., Гращенко А.С., Печников А.И., Маслов В.Н., Завьялов Д.В., Абдрахманов В.Л.,

Романов А.Е., Николаев В.И. Исследование эпитаксиальных слоёв и монокристаллов β-Ga₂O₃ методом наноиндентирования // Физика и механика материалов. 2016. Т. 29. № 2. С. 166–171.

- 21. Víllora E.G., Arjoca S., Shimamura K., Inomata D., Aoki K. β -Ga₂O₃ and single-crystal phosphors for highbrightness white LEDs and LDs, and β -Ga₂O₃ potential for next generation of power devices // Oxide-based materials and devices V: Proceedings of SPIE. 2014. Vol. 8987. Article number 89871U. DOI: <u>10.1117/12</u>. <u>2039305</u>.
- Pechnikov A.I., Stepanov S.I., Chikiryaka A.V., Scheglov M.P., Odnobludov M.A., Nikolaev V.I. Thick α-Ga₂O₃ Layers on Sapphire Substrates Grown by Halide Epitaxy // Semiconductors. 2019. Vol. 53. № 6. P. 780–783. DOI: <u>10.1134/S1063782619060150</u>.
- 23. Fischer-Cripps A.C. Nanoindentation. New York: Springer, 2011. 282 p. DOI: <u>10.1007/978-1-4419-9872-9</u>.
- 24. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // Journal of Materials Research. 1992. Vol. 7. № 6. P. 1564–1583. DOI: 10.1557/JMR.1992.1564.
- 25. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advanced in understanding and refinements to methodology // Journal of Material Research. 2004. Vol. 19. № 1. P. 3–20. DOI: <u>10.1557/jmr.2004.19.1.3</u>.
- 26. McSkinin H.J., Andreatch Jr.P., Glynn P. The Elastic Stiffness Moduli of Diamond // Journal of Applied Physics. 1972. Vol. 43. № 3. P. 985–987. DOI: <u>10.1063/</u> <u>1.1661318</u>.
- Ohmura T., Wakeda M. Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique // Materials. 2021. Vol. 14. № 8. Article number 1879. DOI: 10.3390/ma14081879.
- 28. Fang X.F., Bishara H., Ding K., Tsybenko H., Porz L., Höfling M., Bruder E., Li Y.W., Dehm G., Durst K. Nanoindentation pop-in in oxides at room temperature: Dislocation activation or crack formation? // Journal of the American ceramic society. 2021. Vol. 104. № 9. P. 4728–4741. DOI: <u>10.1111/jace.17806</u>.
- 29. Nikolaev V.I., Chikiryaka A.V., Guzilova L.I., Pechnikov A.I. Microhardness and Crack Resistance of Gallium Oxide // Technical Physics Letters. 2019. Vol. 45. № 11. P. 1114–1117. DOI: <u>10.1134/S1063785019</u> <u>110117</u>.
- 30. Schewski R., Wagner G., Baldini M., Gogova D., Galazka Z., Schulz T., Remmele T., Markurt T., von Wenckstern H., Grundmann M., Bierwagen O., Vogt P., Albrecht M. Epitaxial stabilization of pseudomorphic α-Ga₂O₃ on sapphire (0001) // Applied physics express. 2015. Vol. 8. № 1. Article number 11101. DOI: 10.7567/APEX.8.011101.
- 31. He H.Y., Orlando R., Blanco M.A., Pandey R., Amzallag E., Baraille I., Rérat M. First-principles study of the structural, electronic, and optical properties of Ga₂O₃ in its monoclinic and hexagonal phases // Physical Review B. 2006. Vol. 74. № 19. Article number 195123. DOI: <u>10.1103/PhysRevB.74.195123</u>.
- 32. Ma Y., Cao L.L., Hang W., Zhang T.H., Yuan J.L. Crystallographic orientation effect on the incipient plasticity and its stochastic behavior of a sapphire single

crystal by spherical nanoindentation // Ceramics International. 2020. Vol. 46. N_{P} 10. P. 15554–15564. DOI: <u>10.1016/j.ceramint.2020.03.102</u>.

- 33. Dub S.N., Brazhkin V.V., Novikov N.V., Tolmachova G.N., Litvin P.M., Lityagina L.M., Dyuzheva T.I. Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation // Journal of Superhard Materials. 2010. Vol. 32. № 6. P. 406–414. DOI: <u>10.3103/S1063457610060067</u>.
- 34. Mao W.G., Shen Y.G., Lu C. Nanoscale elastic–plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation // Journal of the European Ceramic Society. 2011. Vol. 31. № 10. P. 1865–1871. DOI: <u>10.1016/j.jeurceramsoc.2011.04.012</u>.
- 35. Ruppi S., Larsson A., Flink A. Nanoindentation hardness, texture and microstructure of α-Al₂O₃ and κ-Al₂O₃ coatings // Thin Solid Films. 2008. Vol. 516. № 18. P. 5959–5966. DOI: <u>10.1016/j.tsf.2007.10.078</u>.
- 36. Nowak R., Pessa M., Suganuma M., Leszczynski M., Grzegory I., Porowski S., Yoshida F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal // Applied physics letters. 1999. Vol. 75. № 14. P. 2070–2072. DOI: <u>10.1063/1.124919</u>.
- 37. Cheng Y.T., Cai D.J., Wang H., Wu J.J., Liu X.S., Zhang G.Y., Yu T.J. Anisotropic Fracture Toughness of Bulk GaN // Physica status solidi B-basic solid state physics. 2018. Vol. 255. № 5. Article number 1700515. DOI: <u>10.1002/pssb.201700515</u>.
- 38. Colemana V.A., Bradby J.E., Jagadish C., Munroe P., Heo Y.W., Pearton S.J., Norton D.P., Inoue M., Yano M. Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire // Applied Physics Letters. 2005. Vol. 86. № 20. Article number 203105. DOI: <u>10.1063/</u> 1.1929874.
- 39. Jian S.R. Mechanical responses of single-crystal ZnO // Journal of Alloys and Compounds. 2010. Vol. 494. № 1-2. P. 214–218. DOI: 10.1016/j.jallcom.2009.11.142.
- 40. Ma Y., Huang X.W., Song Y.X., Hang W., Zhang T.H. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO₃ Single Crystal by Nanoindentation // Materials. 2019. Vol. 12. № 10. Article number 1683. DOI: <u>10.3390/ma12101683</u>.

REFERENCES

- Pearton S.J., Yang J.C., Cary P.H., Ren F., Kim J., Tadjer M.J., Mastro M.A. A review of Ga₂O₃ materials, processing, and devices. *Applied Physics Review*, 2018, vol. 5, no. 1, article number 011301. DOI: <u>10.1063/</u> 1.5006941.
- Nikolaev V.I., Stepanov S.I., Romanov A.E., Bougrov V.E. Gallium oxide. *Single Crystals of Electronics Materials. Growth and Properties*, 2019, pp. 487–521. DOI: <u>10.1016/B978-0-08-102096-8.00014-8</u>.
- Hasan M.N., Swinnich E., Seo J.-H. Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics. *International Journal of High Speed Electronics and Systems*, 2019, vol. 28, no. 01n02, article number 1940004. DOI: <u>10.1142/</u> <u>9789811216480_0004</u>.
- Zhang H.P., Yuan L., Tang X.Y., Hu J.C., Sun J.W., Zhang Y.M., Zhang Y.M., Jia R.X. Progress of Ultra-Wide Bandgap Ga₂O₃ Semiconductor Materials in Power

MOSFETs. *IEEE Transactions on Power Electronics*, 2020, vol. 35, no. 5, pp. 5157–5179. DOI: <u>10.1109/</u>TPEL.2019.2946367.

- Guo D., Guo Q., Chen Z., Wu Z., Li P., Tang W. Review of Ga₂O₃-based optoelectronic devices. *Materials Today Physics*, 2019, vol. 11, article number 100157. DOI: <u>10.1016/j.mtphys.2019.100157</u>.
- Chen X.H., Ren F.F., Ye J.D., Gu S.L. Gallium oxidebased solar-blind ultraviolet photodetectors. *Semiconductor Science and Technology*, 2020, vol. 35, no. 2, article number 023001. DOI: <u>10.1088/1361-6641/ab6102</u>.
- Kaur D., Kumar M. A Strategic Review on Gallium Oxide Based Deep-Ultraviolet Photodetectors: Recent Progress and Future Prospects. *Advanced optical materials*, 2021, vol. 9, no. 9, article number 2002160. DOI: <u>10.1002/adom.202002160</u>.
- Bauman D.A., Borodkin A.I., Petrenko A.A., Panov D.I., Kremleva A.V., Spiridonov V.A., Zakgeim D.A., Silnikov M.V., Odnoblyudov M.A., Romanov A.E., Bougrov V.E. On improving the radiation resistance of gallium oxide for space applications. *Acta Astronautica*, 2021, vol. 180, pp. 125–129. DOI: <u>10.1016/j.actaastro.</u> <u>2020.12.010</u>.
- Roy R., Hill V.G., Osborn E.F. Polymorphism of Ga₂O₃ and the System Ga₂O₃-H₂O. *Journal of the American Chemical Society*, 1952, vol. 74, no. 3, pp. 719–722. DOI: <u>10.1021/ja01123a039</u>.
- Hazdra P., Popelka S. Radiation resistance of widebandgap semiconductor power transistors. *Physica Status Solidi (A) Applications and Materials Science*, 2017, vol. 214, no. 4, article number 1600447. DOI: <u>10.1002/</u> <u>pssa.201600447</u>.
- Lee S.-D., Akaiwa K., Fujita S. Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates. *Physica status solidi C: current topics in solid state physics*, 2013, vol. 10, no. 11, pp. 1592–1595. DOI: <u>10.1002/pssc.201300259</u>.
- Lipinska-Kalita K.E., Kalita P.E., Hemmers O.A., Hartmann T. Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression. *Physical Review B*, 2008, vol. 77, no. 9, article number 094123. DOI: <u>10.1103/PhysRevB.77.</u> <u>094123</u>.
- Furthmuller J., Bechstedt F. Quasiparticle bands and spectra of Ga₂O₃ polymorphs. *Physical Review B*, 2016, vol. 93, no. 11, article number 115204. DOI: <u>10.1103/</u><u>PhysRevB.93.115204</u>.
- Wu Y.Q., Gao S., Huang H. The deformation pattern of single crystal β-Ga₂O₃ under nanoindentation. *Materials Science in Semiconductor Processing*, 2017, vol. 71, pp. 321–325. DOI: <u>10.1016/j.mssp.2017.08.019</u>.
- Wu Y.Q., Gao S., Kang R.K., Huang H. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micropillars. *Journal of Materials Science*, 2019, vol. 54, no. 3, pp. 1958–1966. DOI: <u>10.1007/s10853-018-2978-9</u>.
- 16. Nakai K., Nagai T., Noami K., Futagi T. Characterization of defects in β-Ga₂O₃ single crystals. *Japanese journal of applied physic*, 2015, vol. 54, no. 5, article number 051103. DOI: <u>10.7567/JJAP.54.051103</u>.
- Ueda O., Ikenaga N., Koshi K., Iizuka K., Kuramata A., Hanada K., Moribayashi T., Yamakoshi S., Kasu M. Structural evaluation of defects in β-Ga₂O₃ single crys-

tals grown by edge-defined film-fed growth process. *Japanese journal of applied physic*, 2016, vol. 55, no. 12, article number 1202B. DOI: <u>10.7567/JJAP.55.</u> <u>1202BD</u>.

- 18. Mu W.X., Jia Z.T., Yin Y.R., Hu Q.Q., Li Y., Wu B.Y., Zhang J., Tao X.T. High quality crystal growth and anisotropic physical characterization of β-Ga₂O₃ single crystals grown by EFG method. *Journal of Alloys and Compounds*, 2017, vol. 714, pp. 453–458. DOI: <u>10.1016/j.jallcom.2017.04.185</u>.
- 19. Grashchenko A.S., Kukushkin S.A., Nikolaev V.I., Osipov A.V., Osipova E.V., Soshnikov I.P. Study of the Anisotropic Elastoplastic Properties of β-Ga₂O₃ Films Synthesized on SiC/Si Substrates. *Physics of the Solid State*, 2018, vol. 60, no. 5, pp. 852–857. DOI: <u>10.1134/</u> <u>S1063783418050104</u>.
- 20. Guzilova L.I., Grashchenko A.S., Pechnikov A.I., Maslov V.N., Zavyalov D.V., Abdrakhmanov V.L., Romanov A.E., Nikolaev V.I. Study of β-Ga₂O₃ epitaxial layers and single crystals by nanoindentation technique. *Fizika i mekhanika materialov*, 2016, vol. 29, no. 2, pp. 166–171.
- 21. Víllora E.G., Arjoca S., Shimamura K., Inomata D., Aoki K. β-Ga₂O₃ and single-crystal phosphors for highbrightness white LEDs and LDs, and β-Ga₂O₃ potential for next generation of power devices. Oxide-based materials and devices V: Proceedings of SPIE, 2014, vol. 8987, article number 89871U. DOI: <u>10.1117/12.</u> <u>2039305</u>.
- 22. Pechnikov A.I., Stepanov S.I., Chikiryaka A.V., Scheglov M.P., Odnobludov M.A., Nikolaev V.I. Thick α-Ga₂O₃ Layers on Sapphire Substrates Grown by Halide Epitaxy. *Semiconductors*, 2019, vol. 53, no. 6, pp. 780–783. DOI: <u>10.1134/S1063782619060150</u>.
- 23. Fischer-Cripps A.C. *Nanoindentation*. New York, Springer Publ., 2011. 282 p. DOI: <u>10.1007/978-1-4419-9872-9</u>.
- 24. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. *Journal of Materials Research*, 1992, vol. 7, no. 6, pp. 1564–1583. DOI: <u>10.1557/JMR.1992.1564</u>.
- 25. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advanced in understanding and refinements to methodology. *Journal of Material Research*, 2004, vol. 19, no. 1, pp. 3–20. DOI: <u>10.1557/jmr.2004.19.1.3</u>.
- 26. McSkinin H.J., Andreatch Jr.P., Glynn P. The Elastic Stiffness Moduli of Diamond. *Journal of Applied Physics*, 1972, vol. 43, no. 3, pp. 985–987. DOI: <u>10.1063/</u> <u>1.1661318</u>.
- Ohmura T., Wakeda M. Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique. *Materials*, 2021, vol. 14, no. 8, article number 1879. DOI: <u>10.3390/ma14081879</u>.
- 28. Fang X.F., Bishara H., Ding K., Tsybenko H., Porz L., Höfling M., Bruder E., Li Y.W., Dehm G., Durst K. Nanoindentation pop-in in oxides at room temperature: Dislocation activation or crack formation? *Journal of the American ceramic society*, 2021, vol. 104, no. 9, pp. 4728–4741. DOI: <u>10.1111/jace.17806</u>.
- 29. Nikolaev V.I., Chikiryaka A.V., Guzilova L.I., Pechnikov A.I. Microhardness and Crack Resistance of

Gallium Oxide. *Technical Physics Letters*, 2019, vol. 45, no. 11, pp. 1114–1117. DOI: <u>10.1134/S10637850</u> 19110117.

- 30. Schewski R., Wagner G., Baldini M., Gogova D., Galazka Z., Schulz T., Remmele T., Markurt T., von Wenckstern H., Grundmann M., Bierwagen O., Vogt P., Albrecht M. Epitaxial stabilization of pseudomorphic α -Ga₂O₃ on sapphire (0001). *Applied physics express*, 2015, vol. 8, no. 1, article number 11101. DOI: <u>10.7567/APEX.8.011101</u>.
- 31. He H.Y., Orlando R., Blanco M.A., Pandey R., Amzallag E., Baraille I., Rérat M. First-principles study of the structural, electronic, and optical properties of Ga₂O₃ in its monoclinic and hexagonal phases. *Physical Review B*, 2006, vol. 74, no. 19, article number 195123. DOI: <u>10.1103/PhysRevB.74.195123</u>.
- 32. Ma Y., Cao L.L., Hang W., Zhang T.H., Yuan J.L. Crystallographic orientation effect on the incipient plasticity and its stochastic behavior of a sapphire single crystal by spherical nanoindentation. *Ceramics International*, 2020, vol. 46, no. 10, pp. 15554–15564. DOI: <u>10.1016/j.ceramint.2020.03.102</u>.
- 33. Dub S.N., Brazhkin V.V., Novikov N.V., Tolmachova G.N., Litvin P.M., Lityagina L.M., Dyuzheva T.I. Comparative studies of mechanical properties of stishovite and sapphire single crystals by nanoindentation. *Journal of Superhard Materials*, 2010, vol. 32, no. 6, pp. 406–414. DOI: <u>10.3103/S1063457610060067</u>.
- 34. Mao W.G., Shen Y.G., Lu C. Nanoscale elastic–plastic deformation and stress distributions of the C plane of sapphire single crystal during nanoindentation. *Journal*

of the European Ceramic Society, 2011, vol. 31, no. 10, pp. 1865–1871. DOI: <u>10.1016/j.jeurceramsoc.2011.</u> 04.012.

- 35. Ruppi S., Larsson A., Flink A. Nanoindentation hardness, texture and microstructure of α-Al₂O₃ and κ-Al₂O₃ coatings. *Thin Solid Films*, 2008, vol. 516, no. 18, pp. 5959–5966. DOI: <u>10.1016/j.tsf.2007.10.078</u>.
- 36. Nowak R., Pessa M., Suganuma M., Leszczynski M., Grzegory I., Porowski S., Yoshida F. Elastic and plastic properties of GaN determined by nano-indentation of bulk crystal. *Applied physics letters*, 1999, vol. 75, no. 14, pp. 2070–2072. DOI: <u>10.1063/1.124919</u>.
- 37. Cheng Y.T., Cai D.J., Wang H., Wu J.J., Liu X.S., Zhang G.Y., Yu T.J. Anisotropic Fracture Toughness of Bulk GaN. *Physica status solidi B-basic solid state physics*, 2018, vol. 255, no. 5, article number 1700515. DOI: <u>10.1002/pssb.201700515</u>.
- 38. Colemana V.A., Bradby J.E., Jagadish C., Munroe P., Heo Y.W., Pearton S.J., Norton D.P., Inoue M., Yano M. Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. *Applied Physics Letters*, 2005, vol. 86, no. 20, article number 203105. DOI: <u>10.1063/</u> <u>1.1929874</u>.
- 39. Jian S.R. Mechanical responses of single-crystal ZnO. Journal of Alloys and Compounds, 2010, vol. 494, no. 1-2, pp. 214–218. DOI: <u>10.1016/j.jallcom.2009.11.142</u>.
- 40. Ma Y., Huang X.W., Song Y.X., Hang W., Zhang T.H. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO₃ Single Crystal by Nanoindentation. *Materials*, 2019, vol. 12, no. 10, article number 1683. DOI: <u>10.3390/ma12101683</u>.

The study of mechanical deformation resistanceof α-Ga₂O₃ epitaxial layers using the nanoindentation technique

© 2021

Lyubov I. Guzilova^{*1,3}, acting junior researcher

Aleksandr S. Grashchenko^{2,4}, junior researcher

Vladimir I. Nikolaev^{1,5}, PhD (Physics and Mathematics), Head of Laboratory, leading researcher

¹Ioffe Institute, St. Petersburg (Russia)

²Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg (Russia)

*E-mail: luba-guzilova@yandex.ru

³ORCID: <u>https://orcid.org/0000-0003-4205-3226</u> ⁴ORCID: <u>https://orcid.org/0000-0002-4746-4238</u> ⁵ORCID: <u>https://orcid.org/0000-0002-5630-0833</u>

Abstract: Gallium oxide (Ga₂O₃) is a wide-bandgap semiconducting material with an bandgap E_g =4.8–5.0 eV, high thermal conductivity (λ ~10.9–27.0 W/(m·K)), and radiation and chemical resistance. Its energy gap width and conductivity allow in the future using the material in the structures of power electronic devices and optoelectronic devices to increase their energy performance, i.e. to decrease heating and increase productive capacity. Radiation resistance, high breakdown field, and optical asymmetry of Ga₂O₃ make it attractive for application when designing UV-photodetector and space systems. The electrical and optical properties of Ga₂O₃ are amply studied, but there are no systematic data on its physical and mechanical properties (hardness, Young's modulus, and crack resistance). The paper investigated the deformation in α-Ga₂O₃ epitaxial layers during nanoindentation. For indentation, the authors used NanoTest (Micro Materials Ltd.) hardness meter. The surface (0001) of α-Ga₂O₃ crystalline layers produced in the process of hydride vapour phase epitaxy on sapphire (Al₂O₃) substrates with basic (0001) orientation was investigated. For the first time, the authors experimentally obtained the values of α-Ga₂O₃ hardness and Young's modulus using the Oliver-Farr method. The dependences of the indentation load on the penetration depth demonstrated the deviation from linearity, including stress relaxation coming from the pop-in effect. The average values of nanohardness *H* and Young's modulus *E* were 17 and 281 GPa, respectively. The obtained *H* and *E* values demonstrate higher characteristics compared to the formerly studied β-Ga₂O₃ epitaxial layers. This discrepancy can be explained by the more close-packed arrangement of the α-Ga₂O₃ corundum structure than one of

monoclinic β -Ga₂O₃. The study shows that α -Ga₂O₃ leaves the majority of semiconducting materials behind in its mechanical properties conceding only to gallium nitride (GaN) and sapphire (Al₂O₃).

Keywords: gallium oxide; epitaxial layers; α -Ga₂O₃ epitaxial layers; α -Ga₂O₃; nanoindentation; mechanical properties; pop-in effect.

Acknowledgments: L.I. Guzilova and V.I. Nikolaev performed their part of the work within the topic "The Fundamental Problems of Physics and Chemistry of Nanostructured and Nanocomposite Materials and Instrumental Structures, Physical Properties of Single-Crystalline and Disordered Materials" of the government assignment No. 0040-2014-0007. A.S. Grashchenko carried out his part of the work within the government assignment to the FSUE Institute of Problems of Mechanical Engineering of RAS No. AAAA-A18-118012790011-3.

The paper was written on the reports of the participants of the X International School of Physical Materials Science (SPM-2021), Togliatti, September 13–17, 2021.

For citation: Guzilova L.I., Grashchenko A.S., Nikolaev V.I. The study of mechanical deformation resistance of α -Ga₂O₃ epitaxial layers using the nanoindentation technique. *Frontier Materials & Technologies*, 2021, no. 4, pp. 7–16. DOI: 10.18323/2782-4039-2021-4-7-16.